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The development and application of methods for the laboratory

evolution of biomolecules has rapidly progressed over the last

few decades. Advancements in continuous microbe culturing

and selection design have facilitated the development of new

technologies that enable the continuous directed evolution of

proteins and nucleic acids. These technologies have the

potential to support the extremely rapid evolution of

biomolecules with tailor-made functional properties.

Continuous evolution methods must support all of the key

steps of laboratory evolution — translation of genes into gene

products, selection or screening, replication of genes encoding

the most fit gene products, and mutation of surviving genes —

in a self-sustaining manner that requires little or no researcher

intervention. Continuous laboratory evolution has been

historically used to study problems including antibiotic

resistance, organismal adaptation, phylogenetic

reconstruction, and host–pathogen interactions, with more

recent applications focusing on the rapid generation of proteins

and nucleic acids with useful, tailor-made properties. The

advent of increasingly general methods for continuous directed

evolution should enable researchers to address increasingly

complex questions and to access biomolecules with more

novel or even unprecedented properties.
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Introduction
Initially demonstrated as a surrogate for Darwinian evo-

lution by Spiegelman and coworkers almost five decades

ago [1], continuous directed evolution has long been

envisioned as a potentially highly efficient method to

discover novel biomolecules with activities of interest. In

Spiegelman’s seminal study, Qb bacteriophage genomic

RNA was amplified based on its ability to serve as a
www.sciencedirect.com 
substrate for purified Qb RNA-dependent RNA-repli-

case. After 74 serial passages of this RNA genome, a

variant was produced that was both 83% smaller and

could be replicated 15 times faster than the starting

Qb RNA genome. Importantly, this study highlighted

the critical nature of selection pressure design, as the

evolved Qb RNA genome could be replicated at a sig-

nificantly faster rate than the parental genome, but could

no longer direct the synthesis of viral particles since this

requirement was not implicit in the selection.

Thirty years later, Joyce and coworkers described the first

system for the continuous directed evolution of catalytic

function. The researchers established a self-sustaining

RNA replication cycle for RNA molecules capable of

catalyzing their own ligation to an RNA–DNA substrate

[2]. Like the Qb system, the RNA ligase ribozyme

continuous evolution system relied on exogenously sup-

plied materials (reverse transcriptase and T7 RNA poly-

merase). Since these early studies, a number of additional

continuous directed evolution systems have been

described, the majority of which are limited to either

catalytic RNAs or involve the evolution of alternative

RNA functions [2–7]. Additionally, these methods have

been exclusively carried out in vitro, where the compara-

tive ease of manipulation and selection stringency adjust-

ment can be exploited compared to in vivo methods.

Nevertheless, these early landmark studies vividly

demonstrated the potential of continuous directed evo-

lution and provided a foundation for subsequent

advances.

All forms of Darwinian evolution must support four

fundamental processes: translation (when the evolving

molecule is not identical to the information carrier),

selection, replication, and mutation (Figure 1).

Traditional directed evolution methods handle each of

these processes discretely, frequently requiring steps in

which the researcher must perform experimental manip-

ulations. In contrast, continuous directed evolution sys-

tems must seamlessly integrate all of these processes into

an uninterrupted cycle. For the purposes of this review,

we define continuous directed evolution as a general

method capable of evolving a specific phenotype, at

the level of an organism or a set of genes, over many

cycles of mutation, selection, and replication with mini-

mal researcher intervention. A continuous evolution

method therefore must support all four stages of Darwi-

nian evolution and allow the surviving genes from one

generation to spontaneously enter the translation, selec-

tion, replication, and mutation processes of the sub-

sequent generation.
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Figure 1
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Schematic representation of directed evolution. All complete directed evolution methods must provide four major components: translation,

selection or screening, replication, and mutation. Historical examples of each of these components are listed. Techniques that are particularly

amenable to in vivo continuous directed evolution are shown in green.
Many key studies on continuous evolution have relied on

manual serial dilution of the evolving population as a

mechanism for propagating genes and controlling selec-

tion stringency. We do not consider this technical manip-

ulation to violate our definition, as such systems have

been shown to be amenable to automation, yielding

similar results [8]. While in vivo continuous evolution

methods have exploited the natural occurrence of the

three steps of Darwinian evolution in living organisms,

these methods have also historically been constrained by

modest scope, often focusing on easily selected pheno-

types such as antibiotic resistance rather than traits associ-

ated with diverse applications and unmet needs.

Recently, more general in vivo continuous directed evo-

lution methods have been developed using various organ-

isms, ranging from viruses to bacteria to higher

eukaryotes. In this review, we highlight a sampling of
Current Opinion in Chemical Biology 2015, 24:1–10 
recent developments in the field of in vivo continuous

directed evolution over the past two decades and their

impact, both realized and prospective, on the directed

evolution community.

Viral continuous evolution
With their high mutation rates [9] and relative ease of

manipulation and study, bacteriophages were used early

on as model organisms for rapid directed evolution of

readily selectable traits [10]. Moreover, the development

of methods for continually culturing bacterial strains has

greatly reduced the barrier for studying bacteriophage

evolution under continuous selection pressure [10,11]. Of

historical note is the early and widespread use of both

chemostats, cultures maintained through the continuous

inflow of fresh growth medium, and auxostats, cultures

regulated by a feedback mechanism that controls the
www.sciencedirect.com
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inflow of growth medium based on a monitored culture

parameter (Figure 2). Both methods have proven useful

in continuous culturing of bacteriophage-infectable

microbes. Methods for bacterial continuous evolution will

be covered in the next section.

Among the earliest examples of viral continuous evolution

is the 1997 work of Molineux and coworkers using FX174,

a bacteriophage capable of propagating using Escherichia
coli or Salmonella typhimurium [12,13]. These studies high-

lighted the ability of this phage to rapidly adjust to novel

environments such as higher temperatures, as well as an

abnormally high degree of mutational convergence

depending on selection conditions. Additionally, substan-

tial improvements in phage fitness were observed over

relatively short time frames, with an average of 1–2

mutations per 24 hours (corresponding to 0.2–0.5% of

the viral genome, and 0.003–0.005 mutations per gener-

ation per kilobase) in the absence of any added mutagens.

In an expansion of this work by Bull and coworkers, FX174

phage was propagated on bacterial hosts under native

conditions for six months, corresponding to �13,000 phage

generations [14]. Mutations continued to accumulate at a

constant rate for the majority of the experiment, suggesting

a potential arms race within the propagating phage pool.

The researchers speculated that this arms race was driven

by the high concentration of phage with respect to host
Figure 2
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cells, resulting in high levels of co-infection and compe-

tition between phage. While the mutation rates observed

under these conditions were high with respect to the size of

the viral genome and sufficient for rapid phage adaptation,

higher rates are typically required to access gene-specific

evolution goals (1–2 mutations per round per gene) [15].

Similar phage propagation experiments were carried out

by Molineux and coworkers using bacteriophage T7 to

study organismal phylogenetic histories [16]. To enhance

the mutation rate, T7 phage was serially passaged in the

presence of the chemical mutagen MNNG (N-methyl-N0-
nitro-N0-nitrosoguanidine), resulting in variants with

differential restriction enzyme cleavage patterns than

the wild-type phage. The correct phylogeny of the diver-

ging phage populations could be determined using these

cleavage patterns, supporting their method for phyloge-

netic reconstruction and suggesting maximization of par-

simony as a promising method for determining ancestral

characteristics. While this approach addressed the need

for high mutagenesis rates during evolution, the selection

was highly qualitative, requiring the accumulation of non-

deleterious mutations that enabled restriction enzyme

profiling. A similar strategy was later used by the same

group to study the effects of successive severe population

bottlenecking and expansion on viral fitness, demonstrat-

ing the remarkable plasticity of the T7 genome toward
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mutations and the interdependence of the accumulated

mutations in specific phage lineages [17]. These studies

also highlight the utility of user-defined mutagenesis

rates in continuous directed evolution, although chemical

mutagens generally offer narrow mutational spectra and

are potent carcinogens.

Recently, T7 phage was used by Barrick and coworkers to

study organismal adaptation to an expanded genetic code

[18��]. Two versions of this phage, wild-type T7 and the

D2 T7 hypermutator, were serially propagated using an E.
coli strain capable of efficiently incorporating 3-iodotyr-

osine at amber stop codons. The use of a genetically

encodable hypermutator resulted in broad mutational

load to the T7 phage without the hazards typically

associated with alternative chemical mutagens. Notably,

two amber codon substitutions reached high frequencies

in the evolving populations: Tyr88Amber in T7 RNA

polymerase (T7 RNAP) and Tyr39Amber in T7 type II

holin. Whereas the mutation in the RNAP was assumed to

be tolerated due to a lack of interaction of this surface-

exposed side chain with the remainder of the protein, the

mutation in the type II holin was shown to be critical for

function in the amber suppressor strain. The findings of

this study suggest that an expanded genetic code may

increase the evolvability of an organism.

Lambda bacteriophage has been used extensively to

study host–virus interactions. Lambda phage natively

recognizes LamB as the main point of entry into E.
coli. Using a strictly lytic lambda phage, Lenski and

coworkers studied the ability of this phage to continu-

ously evolve the ability to use alternative outer mem-

brane receptors as the point of entry [19��]. Upon co-

culturing this phage with host cells in glucose-limited

conditions, the bacteria rapidly evolved resistance

through downregulation of lamB expression. The mutat-

ing pool of lambda phage then evolved compensatory

mutations in the LamB recognition protein J, resulting in

improved fitness on LamB, as well as facilitating the use a

new receptor, OmpF. In response, the E. coli host reduced

fitness of the mutant lambda phage through mutations to

manYZ, two proteins that form an inner membrane chan-

nel required for lambda phage entry. This coevolution

highlights the utility of continuous evolution methods in

revealing the dynamic interplay between host and virus

evolution.

While these systems have enhanced our understanding of

fundamental aspects of evolution, they generally are

limited by an uncontrolled (usually low) mutagenesis rate

intrinsic to the bacteriophage and host, and/or the

requirement for broad organismal adaptation to an

environmental challenge, rather than enabling the evo-

lution of a specific biomolecular activity of interest. Our

group has developed a bacteriophage-based continuous

evolution system that attempts to address these two
Current Opinion in Chemical Biology 2015, 24:1–10 
limitations. Phage-assisted continuous evolution (PACE)

is a general system for the directed evolution of biomo-

lecules that relies on previously discussed methods for the

continued culturing of E. coli, can be used to evolve, in

principle, any activity that can be coupled to gene tran-

scription in E. coli, and allows real-time modulation of

selection stringency and mutagenesis levels [20��].

Briefly, PACE takes advantage of the critical role of the

minor coat protein pIII from the filamentous bacterio-

phage M13 during both infection and progeny release

[21]. Phage lacking functional pIII have virtually no

ability to propagate and are rapidly lost under continuous

culturing conditions. However, host cell-provided pIII

restores the virulence of the phage and allows robust

phage propagation in continuous culture. Accordingly,

phage-borne genes encoding the ability to trigger pIII

in host cells gain a fitness advantage and propagate at the

expense of unfit phage. To increase the mutation rate

during PACE, an inducible plasmid driving the expres-

sion of error-prone E. coli polymerase subunits results in

�100-fold increased mutagenesis with a more-uniform

distribution of mutations as compared to traditional

chemical mutagens [20��]. Due to the continuous flow

nature of this system, mutations accumulate only within

the phage genome and the gene to be evolved, reducing

the likelihood of ‘cheaters’ overtaking the population

during selection.

PACE was initially used to evolve novel activity in T7

RNAP [20��]. Whereas T7 RNAP efficiently initiates

transcription using the native T7 promoter, it lacks

detectable activity on the related T3 promoter. Using a

combined T7/T3 promoter as an evolutionary stepping-

stone, T7 RNAP variants capable of efficiently initiating

transcription from the T3 promoter were evolved within a

few days. This method has since been expanded to

address the effects of varying levels of mutagenesis

and selection stringency on enzyme evolution [22], the

path dependence of convergent protein evolution [23],

the effects of neutral drift, negative selection, and strin-

gency modulation on enzyme evolution [24], and the

rapid evolution of protease enzymes from pathogenic

viruses that predict how viral proteases evade clinically

relevant antiviral drugs [25]. This system has been further

modified to enhance its ability to serve as a basis for

alternative selection schemes, and ongoing studies use

PACE to mediate the continuous directed evolution of

DNA-binding domains, protein–protein interactions,

genome modification enzymes, proteases, and other

enzymes [25].

Bacterial continuous evolution
Mechanisms that enable the efficient and unmonitored

continuous propagation of bacteria and other microorgan-

isms have served as a key component of many continuous

evolution methods. While their utility has been extensively
www.sciencedirect.com
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demonstrated for bacteriophage evolution efforts as high-

lighted in the previous section, these methods have also

facilitated the study of continuous directed evolution of

bacterial populations, especially in cases where the gene to

be evolved is large or cannot be directly coupled to viral

fitness. A recent demonstration assesses the evolution of

population-wide antibiotic resistance. Using a continuous

culture of E. coli, Collins and coworkers added increasing

concentrations of the antibiotic norfloxacin to study popu-

lation dynamics during increasing antibiotic selection pres-

sure [26�]. Surprisingly, the researchers found that single

members of the population were, on average, less resistant to

the antibiotic than the population as a whole. Additionally,

resistant members were found to produce high levels of

indole, a signaling molecule used by the surrounding, less

resistant members to induce protective mechanisms against

the antibiotic.

In a related study, Kishony and coworkers followed

parallel populations of E. coli under differing antibiotic

selection pressures using a bacterial culture device

termed the morbidostat [27��]. Unlike the previous study

in which the concentration of antibiotic is adjusted in 24-

hour intervals, the morbidostat continuously adjusts the

concentration of the antibiotic to maintain a nearly con-

stant selection pressure (as judged by changes in cell

density, thereby making it a variation on the prototypical

auxostat). The parallel populations were challenged with

different antibiotics, and followed using whole-genome

sequencing to assess the nature of the mutations endow-

ing the populations with antibiotic resistance. For chlor-

amphenicol and doxycycline, resistance proceeded

through multiple pathways, ultimately resulting in similar

levels of antibiotic resistance using different sets of

mutations. Conversely, resistance to trimethoprim pro-

ceeded through a highly sequential series of mutations in

DHFR and its associated promoter in all the parallel

populations. Importantly, many resistance mutations that

had been previously identified using plate-based methods

were not found in this study, highlighting variable fitness

costs for some mutations depending on selection con-

ditions, and the stochasticity of evolution under selection

conditions for which many potential pathways to

increased fitness exist.

For some applications the basal rate of bacterial muta-

genesis may not be high enough to provide access to

necessary genetic changes on a practical timescale.

Methods for the unbiased, yet targeted, mutagenesis of

bacteria would dramatically facilitate these applications.

An ideal method would require that the evolving gene(s)

be replicated by an orthogonal, error-prone polymerase

enzyme. One such system uses the E. coli DNA poly-

merase I (Pol I). Bacteria lacking Pol I are viable,

suggesting that manipulation of this polymerase might

be tolerated. Loeb and coworkers used previously

reported mutations that increase the error rate of Pol I
www.sciencedirect.com 
to continuously evolve TEM beta-lactamases capable of

hydrolyzing a third-generation lactam antibiotic, aztreo-

nam [28]. Three serial dilutions of a growing bacterial

culture in increasing concentrations of aztreonam strongly

enriched clinically relevant TEM mutations. The utility

of this technique extends beyond the continuous directed

evolution of antibiotic resistance, as it also enables the

potent and targeted in vivo mutagenesis of a gene of

interest. It should be noted, however, that an inverse

relationship exists between the length of the gene of

interest and the mutagenesis rate using this system and

others that depend on Pol I mutants [28,29].

Bacterial continuous evolution has also been used to

evolve phenotypes other than antibiotic resistance.

The E. coli DNA polymerase III epsilon subunit DnaQ

is responsible for the proofreading activity of most DNA

replication. Dominant-negative variants of DnaQ pro-

vided in trans are known to have dramatic consequences

on replication fidelity [30]. Integrating these principles,

Ma and coworkers constructed a library of dnaQ mutants

using error-prone PCR to be expressed constitutively in

continuously growing bacterial cultures [31]. Selection

pressures in the form of increasing concentrations of n-

butanol or acetic acid were applied to the growing cul-

tures. Plasmids carrying mutagenic dnaQ variants should

be enriched at high concentrations of n-butanol or acetic

acid because they endow their hosts with the ability to

more quickly adapt to the strong selection pressure.

Within 24–36 days of continuous evolution, the E. coli
populations became adapted to the high solvent concen-

trations. As the researchers predicted, all the dnaQ var-

iants that evolved in surviving cells were more mutagenic

than the wildtype dnaQ, increased the mutation rate by up

to 2800-fold, and contained mutations known to dramatic-

ally enhance mutagenesis [30,31].

All of these examples of bacterial continuous evolution

rely on the manual passaging of the bacteria being stu-

died, or use an automated variant of a chemostat or

auxostat. In either case, biofilm formation can dramatic-

ally affect the success of the experiment, as bacteria are

known to attach to the culture vessel wall upon extended

propagation. To ameliorate this issue, an apparatus

dubbed the ‘GM3 cultivation device’ was recently devel-

oped to allow the maintenance of steady-state microbial

growth over extremely long timeframes (Figure 3). This

apparatus uses two growth chambers that are cyclically

used to culture the microbe of interest, with alternating

rounds of chemical sterilization that ensure that members

of the population do not escape selections for faster

growth through biofilm formation.

In one application of the GM3 device, Mutzel and co-

workers evolved E. coli containing the large-scale substi-

tution of chromosomal thymine with 5-chlorouracil [32�].
The researchers used a thymine auxotroph grown in
Current Opinion in Chemical Biology 2015, 24:1–10
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Figure 3
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continuous culture on two types of media: a permissive

media with all essential nutrients including thymine, and

a selective media of similar composition with the excep-

tion of thymine, which was substituted with 5-chlorour-

acil. To slowly modulate selection stringency they mixed

varying ratios of the two media, starting from 100%

thymine-containing media and slowly transitioning to

100% 5-chlorouracil-containing media over six months.

By the end of the experiment, strains with a significant

number of mutations or chromosomal rearrangements

that could grow using 5-chlorouracil were isolated. These

strains were capable of incorporating 5-chlorouracil at

levels up to 90% of the chromosomal DNA, with the

remaining 10% attributed to thymine. After further op-

timization, the fraction of chromosomal thymine was

reduced to less than 2% through removal of a cryptic

pathway to thymine deoxynucleotide production.

In another application of the same device, Hilvert and

coworkers continuously evolved an artificial chorismate

mutase enzyme that had been previously designed using

a nine-amino-acid code [33]. Chorismate mutase natively
Current Opinion in Chemical Biology 2015, 24:1–10 
converts chorismate to prephenate in the shikimate path-

way, a critical step in the biosynthesis of the aromatic

amino acids phenylalanine and tyrosine. A strain of E. coli
lacking wild-type chorismate mutase and expressing the

artificial variant was continuously propagated for more

than 200 days, initially in low phenylalanine-containing

media and slowly transitioning to media lacking both

phenylalanine and tyrosine. Bacteria carrying improved

chorismate mutase mutants grew at a faster rate in the

restrictive media, resulting in their enrichment over the

course of the experiment. By the end of the experiment,

chorismate mutase variants that expanded the nine amino

acid code to ten or eleven amino acids could be isolated,

and mutants generally had improved activity as compared

to the parent. This study suggests that expanded genetic

codes can result in improved evolvability, a similar con-

clusion to those reached by Barrick and coworkers using

3-iodotyrosine incorporation in T7 bacteriophage [18��].

Eukaryotic continuous evolution
Viral and bacterial hosts are not suitable for the directed

evolution of biomolecules in certain scenarios. In cases of
www.sciencedirect.com
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industrial drug precursor production [34] or whole-cell

biocatalysis [35], higher organisms with more extensive or

relevant biosynthetic pathways may be necessary.

Toward this end, continuous directed evolution tech-

niques using eukaryotic organisms have also been devel-

oped.

In one of the earliest examples of eukaryotic continuous

evolution, the Evolugator, a proprietary continuous cultur-

ing device that reduces biofilm formation and wall growth

(Figure 4), was used to evolve thermotolerant filamentous

fungi. During long-term continuous culturing of filamen-

tous fungi, wall growth can be problematic as fungal cells

rapidly aggregate, leading to non-uniform culture dilution.

To circumvent this issue, de Crécy-Lagard and coworkers

devised an alternative method for continuous fungi cultur-

ing that dramatically ameliorates fungal wall growth
Figure 4
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[36,37]. Using this platform over the course of four months,

the researchers evolved two thermotolerant variants of the

entomopathogenic fungus Metarhizium anisopliae to facili-

tate the widespread adoption of this fungus for pest control

[37]. While successful, this method for continuous directed

evolution requires specialized equipment that cannot be

readily generalized to alternative selection methodologies.

Cornish and coworkers recently noted that many in vivo
selection methods do not take advantage of genetic

recombination as a source of diversification, and reasoned

that the selective induction of double-stranded breaks

(DSBs) with high efficiency could dramatically increase

the degree of recombination in Saccharomyces cerevisiae
[38�]. They developed a yeast continuous evolution sys-

tem made of three parts: a plasmid that tightly controls

the expression of the site-specific endonuclease I-SceI, a
/cells

 clamp Turbidity meter

lt
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cassette plasmid that contains regions of homology to the

target sequence flanked by I-SceI cleavage sites, and a

target plasmid carrying the gene to be mutagenized.

Upon induction of the endonuclease, the mutagenic

cassette is liberated from its respective plasmid and goes

on to mutate the region of interest through homology-

directed recombination [38�]. Using this system, the

authors were able to evolve hisA variants capable of

complementing trp1 auxotrophy in yeast in less than

one month. This system is accessible and potentially

powerful but requires knowledge of the relevant regions

of a gene to mutate since genetic diversity is dependent

on homology-directed recombination.

One of the most useful features of a continuous directed

evolution system is the ability to modulate the mutagen-

esis of the evolving genes in a manner that does not

perturb either the selection or the organism. This feature

was one of the major design considerations for the de-

velopment of the PACE platform [20��], in which

mutations accumulate only in replicating phage; the

error-prone bacterial Pol I variants [28], in which

mutations accumulate only in ColE1-type origin vectors;

and the I-SceI-based yeast recombination system [38�], in

which mutations are restricted to regions highly homolo-

gous to the mutagenic cassette. All of these systems

largely abrogate or avoid host strain mutagenesis. A

similar approach was recently developed by Chang Liu

and coworkers using a system that is completely con-

tained in yeast. The authors used an autonomous DNA

replication system from Kluveromyces lactis to enable the

replication of a gene of interest in the S. cerevisiae cytosol

[39��]. Due to the strict requirements for the orthogonal

K. lactis DNA polymerase initiation, no crosstalk was

observed between the K. lactis components and the native

host machinery. To make this system more amenable to

directed evolution, the authors used a homology-guided

approach to create error-prone DNA polymerase variants

that would only replicate the orthogonal plasmid. The

optimized system was able to induce �300� higher rates

of mutagenesis in the orthogonal plasmid as compared to

the background S. cerevisiae mutagenesis rate, with no

reduction in the genomic replication fidelity. This system

represents an important methodological advance in con-

tinuous directed evolution in eukaryotes.

Conclusion
Methods for the directed evolution of biomolecules have

proven to be important technologies for generating new

functional proteins and nucleic acids as research tools and

therapeutics, as well as for facilitating the investigation of

fundamental biological questions. Some of the limitations

of traditional stepwise laboratory evolution approaches

can be overcome by continuous directed evolution plat-

forms. Continuous directed evolution intrinsically

enables a broader exploration of sequence space in a

practical timescale compared to traditional discrete
Current Opinion in Chemical Biology 2015, 24:1–10 
laboratory evolution methods. Indeed, in vivo continuous

evolution methods can enable >1011 protein variants to

be generated and subjected to selection over >100 gener-

ations of evolution in less than a week [20��]. The

efficiency of continuous evolution methods can enable

long evolutionary trajectories [14,23,32�,33] or access to

highly evolved biomolecules with new properties that

would otherwise require impractical time scales

[1,2,18��,24,27��,31,38�]. In addition, some continuous

evolution platforms, including several described above,

can avoid genetic bottlenecks from modest population

sizes, modest screening throughput, or modest mutation

rates that commonly constrain some traditional laboratory

evolution methods. The minimal reliance on researcher

intervention during continuous evolution can also make

performing multiple parallel evolution experiments more

accessible than using traditional directed evolution plat-

forms [12–14,18��,19��,20��,22–24,27��,31,39��].

Continuous directed evolution methods are not without

their own drawbacks and should be considered a comp-

lement, rather than a replacement, to other laboratory

evolution approaches. Establishing a continuous cycle of

translation, mutation, selection, and replication that is

general for a range of biomolecules is challenging, and

therefore most continuous evolution methods perform

these key steps inside cells. As a result, while traditional

in vitro directed evolution techniques enable exquisite

control of selection stringency and mutation rate through

simple adjustments of additive concentrations, analogous

perturbations are more difficult to implement in vivo and

generally must be empirically determined. Because in
vivo continuous evolution platforms typically require

continuous culture of microorganisms, contamination

either by ‘cheaters’ (uninteresting gene variants that

bypass selections) or by inoculation with undesired organ-

isms poses additional hurdles for implementing these

methods.

Finally, the development of selection methods compa-

tible with continuous evolution is typically more difficult

than the development of analogous selections or screens

for traditional stepwise laboratory evolution methods.

Evolved biomolecules with desired properties in a con-

tinuous evolution system must be linked to gene and

organism replication, rather than to the generation of

fluorescent or colorimetric signals that have proven to

be robust staples of in vitro and cell-based screening.

While establishing this linkage between desired biomo-

lecule function and cell survival is relatively straightfor-

ward for genes that are natively associated with

organismal fitness (such as antibiotic resistance, tempera-

ture or solvent tolerance, or improved growth rate), the

design of selections for continuous evolution is more

challenging for genes and gene products that do not

intrinsically affect cellular survival. Fortunately, many

creative strategies have been described for coupling a
www.sciencedirect.com
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wide variety of molecular activities to cell survival, in-

cluding protein-fragment complementation of enzymatic

activities and organelle-specific localization signals, n-

hybrid systems for binding activity and bond-formation

catalysis [40,41], derepression-based methods for bond-

cleaving activities [42], gene regulation-based selections

for activities associated with transcription or translation

[43], and cis-acting elements for metabolite sensing [44].

We anticipate that the expansion of such selection

methods to address an increasingly broad scope of mol-

ecular problems of interest will play a key role in fully

realizing the potential and defining the future impact of

continuous directed evolution.
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