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Genetic variation fuels Darwinian evolution, yet spontaneous

mutation rates are maintained at low levels to ensure cellular

viability. Low mutation rates preclude the exhaustive

exploration of sequence space for protein evolution and

genome engineering applications, prompting scientists to

develop methods for efficient and targeted diversification of

nucleic acid sequences. Directed evolution of biomolecules

relies upon the generation of unbiased genetic diversity to

discover variants with desirable properties, whereas genome-

engineering applications require selective modifications on a

genomic scale with minimal off-targets. Here, we review the

current toolkit of mutagenesis strategies employed in directed

evolution and genome engineering. These state-of-the-art

methods enable facile modifications and improvements of

single genes, multicomponent pathways, and whole genomes

for basic and applied research, while simultaneously paving the

way for genome editing therapeutic interventions.
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Introduction
Naturally occurring biomolecules are products of evolu-

tion in service of the survival of an organism, but they

often lack the catalytic efficiency, specificity, or stability

necessary for industrial or therapeutic applications. To

improve these properties, proteins and other biopolymers

are subjected to rounds of directed evolution, a powerful

and flexible scheme to systematically endow biomole-

cules with desirable traits. This approach can employ a

variety of mutagenesis strategies to modulate the fre-

quency, distribution, and spectrum of mutations to

explore biomolecule sequence landscapes, and applies

selections or screens to identify and assess improved

variants. The choice of diversification strategy is critical
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to the success of a directed evolution campaign, as the

sequence landscape of a standard protein or biopolymer is

typically too vast to be exhaustively searched [1]. Where a
priori information is limited, unbiased and random in vitro
[2,3] or in vivo [4–7] mutagenesis methods have success-

fully generated libraries of variants with improved or

novel functionalities. Alternatively, bioinformatics, struc-

tural, or biochemical information can be leveraged to

comprehensively explore a portion of the variant land-

scape by focusing mutagenesis on functionally relevant

sites [8,9]. Finally, newly identified beneficial mutations

can be isolated or integrated into single sequences using

in vitro [10,11] or in vivo [12�,13] recombination methods.

Recently, laboratory evolution has shifted to techniques

that directly couple the diversification and assessment

steps, providing the basis for continuous in vivo evolution

strategies [14] that streamline previously lengthy experi-

ments and minimize the need for human intervention.

Whereas these methods have proven crucial for studying

structure-function relationships of single macromolecules

[15], functional genomic screening and genome engineer-

ing applications typically require unbiased methods for in
situ genome modification. Early methods to produce

strain libraries relied on treatments with chemical muta-

gens/stressors [16] or transposon mutagenesis [17], and

later integrated targeted methods employing homologous

recombination capabilities, or recombineering (recombina-

tion-mediated genetic engineering) [18]. These

approaches have been applied in both eukaryotes [19]

and prokaryotes [20], and extended to enable in vivo
continuous genome engineering [21��,22]. The recent

discovery of CRISPR-Cas9 systems has reshaped this

field, owing to their effectiveness as programmable

nucleases or DNA-binding domains, and enabling novel,

comparatively facile strategies for targeted diversification

in cells [23].

In this review we focus on novel approaches for the

diversification of biomolecules and generation of variant

libraries, which underlie the application of evolutionary

principles in molecular biology research and engineering.

We first discuss untargeted mutagenesis methods that are

commonly applied in generating diversity for directed

protein evolution, and highlight novel methods that have

been developed over the past decade. We transition to

more targeted mechanisms of creating diversity, and

address recent advances in targeted genome modifica-

tions with an emphasis on the latest developments in

CRISPR-based systems.
www.sciencedirect.com
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Diversification methods for directed protein
evolution and functional studies
Random mutagenesis

Natural mutation rates are low (�10�9 mutations/nucleo-

tide/generation [24]) and, therefore, inappropriate for

diversification of nucleic acid sequences in a laboratory

setting. Laboratory evolution of biomolecules critically

depends on elevated mutation rates for the discovery of

improved or novel activities, mirroring biological princi-

ples that exist naturally (e.g. somatic hypermutation is

employed to generate substantial antibody diversity [25]).

Early protein evolution efforts catalyzed the develop-

ment of approaches to increase mutation rates in a

sequence-independent fashion to facilitate the unbiased

construction of large and diverse gene libraries, spear-

headed by techniques like error-prone PCR (epPCR).

PCR protocols can be modified to reduce the fidelity of

the reaction by modulating buffer composition [26] and

dNTP ratios [3], introducing nucleoside analogues [2],

using proofreading-deficient polymerases [27,28], or

treating oligonucleotides with chemical mutagens [29].

While these various approaches increase overall mutation

rates, the distribution of specific base changes that are

generated can limit the chemical diversity of the resultant

libraries. This distribution, called the mutational spec-

trum, cumulatively describes the efficiency and bias of

sequence space exploration by a mutagenesis method.

Despite widespread implementation, epPCR suffers

from a bias in mutational spectrum (Table 1) to predomi-

nately incorporate transitions (A$G or T$C), yielding

libraries enriched in synonymous mutations or conserva-

tive nonsynonymous mutations given the redundancy and

assignments of the 64 natural codons. The sequence

saturation mutagenesis (SeSaM) [30�] method was devel-

oped to specifically address this bias (Table 1), where the

promiscuous base-pairing nucleotide inosine is enzymat-

ically incorporated in the variant library and later replaced

with canonical nucleotides through standard PCR. A

recent improvement, SeSam-Tv-II [31��], increases the

likelihood of consecutive mutations, especially double

transversions (A/G$C/T), thereby improving library

quality and generating variants that are typically inacces-

sible by conventional epPCR [31��].

While epPCR-based methods introduce genetic variation

primarily through point mutations, insertion and/or dele-

tion (indels) of codons can also have considerable con-

sequences on biomolecule function. These types of var-

iants can be readily accessed using complementary

methods such as TRINS [32], which incorporates short

tandem repeats generated by rolling circle amplification

into a target sequence. The resultant diversity is, how-

ever, limited to short sequence duplications rather than

truly random insertions, with a significant fraction of the

diversified pool encoding frameshifting insertions that

can limit downstream discovery efforts (Table 1). It is

possible to access in-frame deletions of multiple codons
www.sciencedirect.com 
through Mu transposon mutagenesis [33], where the gene

of interest bridges a TAT periplasm-directing signal and

TEM-1 b-lactamase, ensuring that only an in-frame

transposition event creates a functional TAT-b-lactamase

product.

Conversely, approaches that do not rely on PCR can

simplify library generation by minimizing researcher

intervention. In error-prone rolling circle amplification

(epRCA) [34], isothermal amplification and mutagenesis

are coupled, and RCA-generated libraries can be directly

transformed into Escherichia coli without further proces-

sing by restriction and ligation reactions (Table 1). RCA

can also be combined with Kunkel mutagenesis [35] in

selective RCA (sRCA) mutagenesis [36]. Plasmids are

first produced from an ung� dut� E. coli strain to undergo

non-specific uridylation (dT!dU), and subsequently

amplified by PCR using mutagenic primers. Treatment

with uracil-DNA glycosylase (UDG) creates abasic sites

in the uracil-containing template, leaving only the muta-

genized product for amplification by RCA. The sRCA

approach increases effective library sizes and improves

the mutagenesis efficiency by eliminating the non-

mutated background sequences (Table 1).

Compared to in vitro mechanisms that require discreet

manipulations to achieve the desired mutagenesis, in vivo
mutagenesis approaches take inspiration from naturally

occurring cellular, error-prone replication machinery.

Early attempts at in vivo mutagenesis were inspired by

SOS response and relied on its components [25], where

mutator strains [4] enabled elevated mutagenesis in vivo,
but to date these approaches have lacked mechanisms to

control the resultant mutation rates and spectra (Table 1).

In instances where unbiased, whole organism mutagene-

sis is desirable (e.g. for genome, plasmid, and viral evo-

lution), a mutagenesis plasmid (MP) system encoding

inducible dominant mutator alleles can be employed

across variable E. coli strains. This in vivo mutagenesis

approach was developed to enable control over a broad

dynamic range of mutation rates concomitant with an

unbiased mutational spectrum (Figure 1a) [6].

Traditional in vivo mutagenesis approaches can also

indiscriminately mutagenize the host genome and acces-

sory gene sequences beyond the target locus. This intrin-

sically limits the mutagenesis rate and may catalyze the

appearance of undesirable ‘cheaters’ in selections or

screens. To overcome this limitation, an error-prone

Pol I polymerase system was developed to preferentially

mutagenize plasmids bearing ColE1 and related origins of

replication in E. coli over chromosomal sequences [5].

Similarly, a system based on an orthogonal plasmid and an

error-prone polymerase pair was recently developed for in
vivo continuous evolution in yeast [37��]. The orthogo-

nality of mutagenesis in this approach is a significant

improvement over previous in vivo methods (Table 1),
Current Opinion in Chemical Biology 2017, 41:50–60
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Table 1

Comparison of strategies for library diversification

Strategy Method Advantage Disadvantage

Random

mutagenesis

In vitro epPCR [2,3,26–28] Easy to implement, high mutation rates,

no prior information required

Biased mutational spectra, laborious

cloning procedures

SeSaM, SeSaM-TV-II [30�,31��] Unbiased mutational spectra,

transversions and consecutive

mutations accessible

Laborious, technically demanding

epRCA [34], sRCA [36] Easy to implement, efficient, random

hexamers instead of primers, isothermal

amplification, products can be directly

transformed

Mutations introduced throughout the

entire plasmid, plasmid multimers

TRINS [32] Expansion of sequence space sampling

through insertion of short repeats

Out-of-frame insertions

In vivo Mutator strains [4] Easy to implement Low mutation rates, off-target

mutagenesis

Mutagenesis plasmid [6] Inducible, broad mutational spectrum,

portable across strains

Off-target mutagenesis

Orthogonal plasmid/DNA

polymerase [37��]
Mutagenesis constrained to the plasmid >50 copies of the linear plasmid per cell

(could affect selection strategies)

Ty1 retrotransposon

mutagenesis [7]

Mutagenesis constrained to the

retrotransposon, capable of evolving

longer sequences (up to 5 kb), broad

host range (K. lactis, and different S.

cerevisiae strains), large library sizes

Possible integration to off-target loci,

relatively low mutation rate

Focused

mutagenesis

In vitro Cassette-mutagenesis [8,9] Comprehensive sampling of variation

for a small number of sites

Requires a priori structural/biochemical

information

PFunkel [42] Multiple-site saturation possible Technically demanding

OmniChange [41] Efficient saturation of up to five sites,

omits restriction enzymes and ligases

Requires phosphorothiolated primers,

library sizes not large enough for full

saturation of five or more sites

TrimerDimer [44] Possible to saturate up to 4 consecutive

positions, reduces screening effort by

eliminating STOP and redundant

codons

Technically demanding

Small-intelligent libraries [45] Eliminates STOP and redundant codons

from libraries, flexible

Experimental distribution of amino-acid

substitutions differs from the

theoretical, limited primer length/

distance between saturated sites

Systemic allelic series

construction through reversibly

terminated inosine [43�]

Facile generation of deep-mutational

scanning libraries

Technically demanding

Mutagenesis through massively

parallel DNA synthesis [47��,49]
Low cost, single volume method to

create libraries with one mutation per

sequence

Technically demanding, limited length

of the target sequence

Recombination In vitro DNA shuffling [10] Rapid improvement of enzyme

properties, flexible, robust shuffling of

pre-existing variants

Homology requirement, laborious, high

background

STeP [11] Easy to implement, single-tube reaction Homology requirement, high

background

Template-change PCR [57] Mimics in vivo recombination through

single crossovers

Low mosaicism, homology requirement

RACHITT [58] Highly diverse libraries, low sequence

identity required

Technically demanding and laborious

(preparation of ssDNA templates)

NRR [59] Independent of homology High number of inactive clones

(insertions, deletions, rearrangements)

In vivo MORPHING [13] Allows combinatorial targeted

mutagenesis and assembly with a

flexible number of crossovers

Laborious, requires �50 bp overhangs

for in vivo assembly

Heritable recombination

in yeast [12�]
Large library sizes, repeated

diversification through recombination

and rearrangement of beneficial

mutations

A priori knowledge required for

mutagenic cassette design, in vitro

library generation

Current Opinion in Chemical Biology 2017, 41:50–60 www.sciencedirect.com
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Methods for in vivo random mutagenesis. (a) A mutagenesis plasmid with arabinose-inducible mutator genes for in vivo directed evolution in E.

coli [6]. This system enables tunable whole-genome mutagenesis, as well as the mutagenesis of sequences carried on plasmid or phage vectors.

(b) An orthogonal system for mutagenesis in S. cerevisiae [37��]. The method uses a linear plasmid capped with P1 terminal proteins that recruit a

specialized error-prone TP-DNA polymerase. Because the P1-capped plasmid is located in the cytoplasm, the host genome is not subjected to

mutagenesis. (c) An in vivo mutagenesis system based on a synthetic Ty1 retrotransposon in S. cerevisiae [7]. The retrotransposon element,

flanked by long terminal repeats (LTRs), is first transcribed, then reverse transcribed in an error-prone fashion, and finally re-integrated into the

stable genomic locus.
as mutations predominantly accumulate in a targeted

sequence (Figure 1b). Yet such directed approaches need

not rely on error-prone polymerases. TagTEAM [38] is an

innovative approach that uses a fusion protein encoding

the yeast 3-methyladenine DNA glycosylase MAG1 and

the tetR DNA-binding domain to enhance mutagenesis

to regions containing arrays of tetO sites.

Beyond such artificial systems, biological systems can

naturally exploit elevated mutagenesis to generate diver-

sity and ensure that at least a fraction of the population

can overcome challenges imposed by the surrounding

environment. For example, error-prone reverse transcrip-

tion, which drives natural variation during retroviral rep-

lication, plays critical roles in facilitating viral escape from

immune system surveillance and the discovery of antiviral

drug resistance [39]. To extend this capability to labora-

tory evolution, a novel retrotransposon-dependent in vivo
mutagenesis strategy was developed to enable robust

continuous evolution schemes [7]. This strategy imple-

ments the yeast retrotransposon Ty1 to generate gene

libraries, where the evolving target sequence is tran-

scribed using host machinery, and then reverse tran-

scribed by the error-prone Ty1 enzyme (Figure 1c,

Table 1). The mutagenized cDNA is integrated into a

stable genomic locus, at which point the biomolecule

variant can be assessed by functional selection or screen.

Related mutagenesis systems are also known occur natu-

rally, such as in the Bordetella bronchiseptica bacteriophage
www.sciencedirect.com 
retroelement, which is comprised of an error-prone

reverse transcriptase that selectively mutates codons of

a key surface protein that determines host specificity [40].

This natural phage-display system has been coopted for

use in the laboratory to evolve high-affinity T4 lysozyme

binders, relying exclusively on the natural diversity gen-

erated by the retroelement [40].

Focused mutagenesis

In order to effectively explore the vast sequence land-

scape of the average protein, structural and biochemical

information can be leveraged to confine genetic variation

to one or multiple sites implicated in a property of

interest. Typically, the selected positions are randomized

using degenerate oligonucleotide codon sequences

(NNN, NNB, NNK, etc.) [8]. Whereas improved variants

may be discovered in libraries where a single position has

been subjected to saturation mutagenesis, it is often

necessary to investigate multiple sites in concert to access

significant improvements in the desired activity. While

site-directed mutagenesis methods can, in principle,

access more than ten sites in a gene of interest [9] in a

single reaction, the efficient simultaneous evaluation of

saturation mutagenesis at multiple sites across a gene

requires a different approach to library construction. One

such method, OmniChange [41], facilitates site-satura-

tion mutagenesis at up to five codons independent of their

location in the target sequence. This method relies on a

single PCR step with phosphorothioate primers to
Current Opinion in Chemical Biology 2017, 41:50–60
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generate modified DNA fragments, which are combina-

torially assembled and transformed without requiring

enzyme-based cloning steps (Table 1).

Site-directed mutagenesis strategies can be extended to

generate comprehensive libraries for studying sequence-

function relationships. PFunkel [42] combines traditional

Kunkel mutagenesis with a Pfu polymerase and thermo-

stable ligase to mutagenize a DNA template using oligo

libraries. In one application, PFunkel afforded a compre-

hensive codon mutagenesis library for the full-length

TEM-1 gene (287 codons). A novel strategy for creating

systematic allelic series (SAS) [43�] relies on reversible

termination during linear amplification of a template

using a capped inosine triphosphate (rtITP). Terminated

amplification products are then isolated, and rtITP is non-

enzymatically liberated. Finally, terminated products are

extended and amplified in a PCR reaction that introduces

dNTPs at sites where inosines were incorporated. This

enables the unbiased introduction of only a single muta-

tion per molecule following amplification by PCR

(Table 1).

Complementary approaches to improve focused muta-

genesis library quality rely on the elimination of redun-

dant and premature stop codons. One approach to miti-

gate codon redundancy, TrimerDimer [44], introduces

codons into degenerate primers via chemical synthesis

and can focus site-saturation mutagenesis at multiple

consecutive positions. While this reduces the total num-

ber of requisite primers for site saturation mutagenesis,

TrimerDrimer might not be readily accessible to the

majority of researchers (Table 1). An alternative approach

integrates bioinformatics analyses to design optimized

sets of degenerate primers, yielding primer mixtures that

contain exactly one codon per amino acid [45]. These

primer mixtures can be used in conjunction with a pre-

ferred mutagenesis method to generate ‘small-intelligent’

mutagenesis libraries where each protein variant is repre-

sented by a single gene, thereby minimizing genotypic

redundancy and reducing unnecessary screening load

(Table 1).

Emerging technologies for massively parallel DNA syn-

thesis [46] have extended these approaches to function-

ally probe large libraries of sequence variants (Table 1). It

is now possible to implement deep mutagenesis scanning

of every position in a given sequence through a single

experiment. In one demonstration, synthetic saturation

mutagenesis [47��] afforded a library of 109 members

covering every possible nucleotide variant of a 35 base

pair promoter sequence (Figure 2a). Such microarray-

based DNA synthesis can also be extended to assess

putative regulatory elements in genomic and episomal

contexts using massively parallel reporter assays

(Figure 2b) [48,49]. Furthermore, deep mutational scan-

ning is not restricted to short regulatory sequences, where
Current Opinion in Chemical Biology 2017, 41:50–60 
microarray-based synthesis of mutagenic primers has

been used to create libraries containing >93% of every

missense mutation in the transcription factors Gal4 and

p53 (Figure 2c) [50]. Finally, libraries of guide RNA pairs

(see the ‘CRISPR-Cas9 based methods’ section) can be

readily synthesized using this technology. In one imple-

mentation, a tiling deletion scan (ScanDel) [49] approach

was used to interrogate loss-of-function mutations in the

HPRT1 genomic locus (Figure 2d). Similar approaches

have been used to investigate the functional effects of

variation in promoters, enhancers, splice sites, and pro-

teins with single-nucleotide resolution [51].

Recombination

Recombination enables the combinatorial rearrangement

of mutations between closely related nucleic acid

sequences. While its origins and its impact on diversity

and adaptation are still a topic of investigation [52],

recombination has been observed in numerous biological

contexts, ranging from mating type switching in Saccha-
romyces cerevisiae [53] to antigenic variation that enables

pathogens to evade host immune responses [54]. In the

laboratory, recombination counters the loss of heteroge-

neity that regularly occurs during the assessment stage of

directed evolution schemes, where competing beneficial

mutations can potentially drive each other to extinction.

It is worth mentioning that even when recombination is

not explicitly sought or desired in a diversification strat-

egy, some experimental approaches, like epPCR [55] or in
vivo mutagenesis [56], can inadvertently lead to

recombination.

Furthermore, recombination techniques can be har-

nessed to create novel combinations of beneficial and/

or epistatic mutations. The first in vitro recombination

protocol, DNA shuffling [10], involved fragmentation and

subsequent PCR-based reassembly of random DNA frag-

ments (Figure 3a). Subsequent methods simplified DNA

shuffling by eliminating the laborious DNA fragmenta-

tion step (Table 1) [10]. A simple PCR-based staggered

extension and template switching [11] or template-

change PCR [57] allows facile generation of chimeric

gene sequences. A major limitation of traditional DNA

shuffling methods has been the requirement for high

sequence similarity between library members (Table 1).

Subsequent in vitro recombination approaches that

reduce [58] or completely eliminate [59] the sequence

similarity requirement have been devised to overcome

this drawback. For example, RACHITT [58] bypasses

the requirement for high homology between parental

fragments by employing transient DNA templates which

serve as hybridization scaffolds prior to full length chi-

mera assembly. This approach generates chimeric recom-

bination products with multiple crossover points and

virtually no parental background sequences, but requires

extensive preparation of ssDNA template preparation for

scaffolding (Table 1).
www.sciencedirect.com
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Figure 2
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Microarray-based saturation mutagenesis methods. DNA synthesis on microarrays allows for rapid, cost-effective production of saturation

mutagenesis libraries, enabling the production of extensive libraries of (a) promoters [47��], (b) enhancers [48], (c) genes [49], and even (d) whole

genomes [50]. In many instances, libraries of near-complete coverage of single mutant [47��] or single codon [49] sequence space facilitate the

robust interrogation of sequence-function relationships. Following functional assessment of the generated variants using one of a host of in vitro or

in vivo assays, high-throughput sequencing can inform fitness levels of the generated mutants in exquisite detail.
Current recombination approaches are shifting from in
vitro to in vivo methods that enable continuous evolution.

Homologous recombination (HR) natively occurs with

high-efficiency in S. cerevisiae, where PCR-diversified

fragments can be assembled into chimeric variants by

Mutagenic Organized Recombination Process by Homol-

ogous IN vivo Grouping (MORPHING) [13] (Figure 3b).

It should be noted that prior bioinformatics, structural, or

biochemical analysis can be leveraged in this method to

target diversification to elements that may be tolerant to

modification and limit changes to alternate regions

(Table 1). It is also possible to leverage HR in diversifi-

cation by mutagenesis, as was recently demonstrated

using a heritable recombination system in S. cerevisiae
[12�], generating libraries with up to 1013 diverse

sequences (Figure 3c). This approach relies on the in
situ production of double-stranded donor templates that

have been mutagenized to saturation at defined sites.

Similar techniques could also be implemented to enable
www.sciencedirect.com 
library recombination in prokaryotes using in vivo assem-

bly (IVA) [60], which was developed for insertions, dele-

tions, and mutagenesis in E. coli.

Mutagenesis methods for genome
engineering and genome-wide screening
Recombineering methods

Recombineering, genome engineering using recombi-

nase enzymes, has been the method of choice for modi-

fying bacterial and yeast genomes over the past two

decades. Bacterial recombineering exploits components

derived from l phage to integrate nucleic acids into the

host genome [20], and facilitates the introduction of point

mutations, deletions, insertions, and rearrangements into

genomic or extrachromosomal DNA [18,20]. Conversely,

recombineering in S. cerevisiae relies on the endogenous

machinery for HR. A highly efficient ssDNA-mediated

recombineering approach has been successfully applied
Current Opinion in Chemical Biology 2017, 41:50–60



56 Mechanistic biology

Figure 3
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Methods for in vitro and in vivo recombination. (a) DNA shuffling [10], an in vitro recombination method, relies on fragmenting a pool of parental

sequences, and uses PCR to assemble full-length chimeras. (b) MORPHING [13] is a method that combines in vitro mutagenesis and in vivo

recombination in yeast for enzyme evolution. (c) An in vivo recombination method [12�] in yeast that uses homologous recombination for cassette

mutagenesis of a target sequence.
to S. cerevisiae [61], enabling modification and assembly of

gene pathways.

Efforts to scale up recombineering to the entire bacterial

genome motivated the development of multiplex auto-

mated genome engineering (MAGE) [21��], an efficient

method for genome-wide ssDNA-mediated allelic repla-

cements. MAGE has been successfully integrated with

conjugative assembly genome engineering (CAGE) to

replace all 314 TAG stop codons in E. coli with the

synonymous TAA codon [62�]. This recoded organism

was later used as a chassis to generate a library of chro-

mosomally integrated aminoacyl-tRNA synthetases, and

select for variants with enhanced ability for multi-site

incorporation of nonstandard amino acids [63]. However,

MAGE requires hosts deficient in methyl-directed
Current Opinion in Chemical Biology 2017, 41:50–60 
mismatch repair (MMR), often resulting in substantial

off-target mutagenesis [62�]. A recently developed

method called portMAGE reduces off-target mutagenesis

by using a temperature-inducible MMR mutant, thereby

temporally limiting mutagenesis [22]. Furthermore, port-

MAGE is transferable across hosts, permitting the

genome modification of diverse bacterial species.

While E. coli is a preferred bacterial host for many

laboratory applications, the utility of recombineering

approaches has been realized beyond this workhorse

bacterium. Using an iterative recombineering approach

called SIRCAS (stepwise integration of rolling circle

amplified segments) [64], the Salmonella typhimurium
genome was extensively modified in the largest genomic

recoding effort to date, enabling 1557 synonymous
www.sciencedirect.com
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leucine substitutions. In addition to whole genome muta-

genesis through recombineering, the flexibility of this

oligo-based approach was recently demonstrated in strat-

egy that extended its applications to directed protein

evolution [65]. As a proof of concept, the authors used

plasmid recombineering to subject the 110-residue iLOV

protein to saturation mutagenesis with near complete

coverage (99.8% of all mutations), uncovering many var-

iants with improved thermostability.

CRISPR-Cas9 based methods

Numerous bacterial and archaeal species carry adaptive

immunity mechanisms based on clustered regularly inter-

spaced short palindromic repeats (CRISPR) and associ-

ated Cas proteins to protect against foreign nucleic acids

[66]. The elucidation of CRISPR-Cas biology has ren-

dered this system convenient for engineering of prokary-

otic [67], archaeal [68], and eukaryotic [23] genomes. The

simplest and most commonly used implementation of

CRISPR-Cas systems consists of only two components:

an endonuclease (e.g. Cas9) capable of generating dou-

ble-stranded breaks (DSBs) in DNA targeted by a single-

guide RNA (sgRNA) [23,66,69�]. Cas9-mediated DSBs

are repaired via non-homologous end-joining (NHEJ),

typically resulting in small indels and inactivation of

the target sequence. In addition, it has been used to

introduce large genomic deletions and catalyze chromo-

somal rearrangements [70].

Homology-directed repair (HDR) pathways can alterna-

tively address DSBs following Cas9-mediated cleavage,

whereby a donor DNA molecule encoding homologous

sequences flanking the targeted site is used as a template.

HDR enables more precise control over outcomes of

Cas9-mediated genome editing, and has been success-

fully used to introduce modifications in genomes of

human [69�] and other eukaryotic [23] cells. However,

early attempts to use CRISPR-Cas systems for genome

engineering revealed two limitations to this approach:

insufficient Cas9 specificity for the target sequence, lead-

ing to off-target mutations [71], and poor efficiency of

HDR repair relative to that of NHEJ [69�]. Yet the ability

of Cas9 and homologous nucleases to generate DSBs in an

sgRNA-defined manner in situ has propelled the recom-

bineering field forward by eliminating three limitations of

the native recombineering methodology. First, Cas9

nuclease can be used for counter-selection against chea-

ters (through cleavage of undesirable variants) [72�].
Second, CRISPR-Cas9-mediated recombineering can

be used to efficiently generate donor templates [72�].
Finally, unlike early recombineering protocols, Cas9-

assisted recombineering can modify genomes in a scarless

fashion [73], obviating potentially adverse effects of

genomic scars.

CRISPR-Cas systems have been extended to enable

forward genetic screening to comprehensively annotate
www.sciencedirect.com 
functional genomic elements. A genome-scale CRISPR-

Cas knockout screen targeting more than 18,000 human

genes [74��] revealed genes essential for cell viability of

melanoma and stem cell lines, and identified genes whose

loss is implicated in resistance to vemurafenib. In a more

focused approach, a similar study probed 291 human

genes to discover host genes responsible for susceptibility

to diphtheria and anthrax toxins [75].

To expand the possible modifications accessible using

CRISPR-Cas9, additional enzymes have been covalently

appended to a nuclease-deficient Cas9 (dCas9), exploit-

ing its RNA-programmable DNA-binding activity to

recruit or directly present fused enzymes to the targeted

nucleic acid [23]. These tools have been extended to the

realm of directed evolution through engineered deami-

nase-Cas9 systems to evolve known variants of GFP [76],

identify novel mutants conferring resistance to bortezo-

mib [76] and imatinib [77], and to enable robust RNA-

programmed recombination through a recombinase-

dCas9 fusion [78].

Conclusion
Diversification methods for directed evolution and

genome modification have rapidly improved over the past

decade. Random mutagenesis methods can now reliably

generate chemically diverse libraries with near-ideal

mutational spectra and at high mutational frequencies.

Novel focused mutagenesis methods readily achieve

simultaneous saturation of numerous noncontiguous

sites. Advances in DNA synthesis now allow for the

exhaustive study of sequence-function relationships in

the single-mutant neighborhood of a protein-coding

sequence. For applications that require exploration of a

broader sequence landscape, recombination methods can

provide libraries with a defined number of cross-overs,

independent of sequence similarity between parental

sequences. And continuous in vivo methods have pro-

vided novel avenues of biomolecule evolution that seek

to limit researcher intervention between rounds of diver-

sification and assessment.

While the early strain and genome modification methods

paralleled the development of gene diversification strat-

egies, the field was hampered by the lack of generalized

tools for high-throughput in vivo targeted modification.

This changed when recombineering set in motion the

extension of directed evolution approaches to genome-

scale modification for prokaryotes and yeast. However, it

was not until the discovery of RNA-guided endonu-

cleases that genomes of other eukaryotes could be modi-

fied with equal ease. Recent advances exemplify the wide

applicability of CRISPR-Cas9 as programmable DNA-

binding domains to engineer tools for targeted mutagen-

esis and synthetic biology directly in the native genomic

context. The staggering rate at which new approaches are

developed in this field undoubtedly ensures that
Current Opinion in Chemical Biology 2017, 41:50–60
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CRISPR-Cas9 will become a routine genome editing

approach, not just in basic science and industrial biotech-

nology, but in applied biomedical research as well.
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