Negative selection and stringency modulation in phage-assisted continuous evolution

Jacob C. Carlson¹, Ahmed H. Badran¹, Drago A. Guggiana-Nilo², and David R. Liu¹*

¹Department of Chemistry & Chemical Biology and Howard Hughes Medical Institute, Harvard University, 12 Oxford St, Cambridge, MA 02138 USA ²Harvard Medical School, Building C-2, Room 122, 240 Longwood Avenue, Boston, MA 02115

Correspondence: David R. Liu (drliu@chemistry.harvard.edu)

Supplementary Results

Supplementary Figure S1	Characterization of candidate drift cassettes
Supplementary Figure S2	Effect of pIII-neg candidate expression on infectious phage titer
Supplementary Figure S3	Dose-dependent effect of pIII-neg expression on phage production
Supplementary Figure S4	Genotypes of continuously evolved RNAP variants
Supplementary Figure S5	Sequence alignment of pIII-neg candidates and wild-type pIII
Supplementary Table S1	List of all plasmids used in this work
Supplementary References	

Supplementary Figure 1. Characterization of candidate gene III cassettes for modulating stringency and enabling drift. (a) Architecture of P_{tet} (top; 148i2), P_{psp} (middle; 175e), and $P_{psp-tet}$ candidates (bottom; 175g, h, k, m, and n variants). For the $P_{psp-tet}$ candidates, the numbers shown in parentheses refer to the constructs that contain the tetR-binding sites at the positions shown by the orange bar. tetR: tetR-binding sites, pspF: pspF-binding sites, $\sigma70$: *E. coli* sigma 70 RNAP promoter, $\sigma54$: *E. coli* sigma 54 RNAP promoter. (b) Architecture of plasmids highlighted in this figure. (c) Luciferase gene expression measurements of candidate drift cassettes in the presence and absence of ATc (which de-represses lacI and induces pIV expression). pIV expression is used for these experiments to emulate filamentous phage infection and drive the psp response. (d) Phage production from discrete cultures containing various drift constructs and SP-T7_{WT} in the presence and absence of ATc (to induce gene III expression) and arabinose (to induce mutagenesis). Robust phage titers are produced regardless of drift cassette copy number or mutagenesis induction. (e) Assay for infection of recipient cells carrying the pTet-pIII cassette. A low proportion of yellow colonies indicates resistance to infection, as seen for recipient cells carrying the induced pTet construct. Data represent mean values \pm s.e. for two replicates.

Supplementary Figure 2. Effect of pIII-neg candidate expression on infectious phage titer. Gene III expression is driven by P_{tet} (induced by ATc) and the expression of a gene III-neg candidate is driven by pLac (induced by IPTG). Constructs from left to right are pJC156a2 (C-domain), pJC156c2 (C83), pJC156j2 (N-C83), pJC156m2 (N2-C83), pJC156o2 (N*-C83). Amino acid sequences of the pIII-neg candidates are provided in Supplementary Figure S5. ATc was used at 4 or 20 ng/mL and IPTG was used at 0 or 2 mM. Data represent mean values \pm s.e. for two replicates.

Supplementary Figure 3. Dose-dependent effect of pIII-neg expression on phage production. An SP encoding a promiscuous T7 RNAP variant (SP-T7_{Prom}) or an SP encoding a P_{T7} -specific RNAP variant (SP-T7_{Spec}) were used to infect cells harboring an AP in which P_{T7} drives gene III expression and an AP-neg in which P_{T3} drives gene III-neg expression in a theophylline-dependent manner. Cells were infected using excess phage for 10 min at 37 °C, centrifuged and washed to remove residual phage, and resuspended in fresh Davis rich media. Infected cells were grown in the presence of the indicated concentrations of theophylline. The resulting titers of progeny phage after reaching mid-log phase are shown in the graph. SP-T7_{Prom} results in fewer progeny phage only when theophylline is added. The total secreted DNA was also measured (bottom) and correlated with phage production. Data are from representative single (n =1) measurements of phage concentration.

Supplementary Figure 4. Genotypes of continuously evolved RNAP variants. Mutations present in clones isolated following the drift stage (left, t = 28 hrs), low-stringency negative selection without theophylline (center left, t = 32 hrs), low-stringency negative selection with theophylline (center right, t = 52 hrs), and high-stringency negative selection (right, t = 70.5 hrs). Mutations in blue are conserved in all clones and were found to confer activity on P_{T3} . Mutations in red are conserved in clones with high specificity for P_{T3} over P_{T7} . Mutations in magenta are, as a group, conserved and predicted based on the structure of T7 RNAP¹ to be physically clustered, but mutually exclusive of each other (negatively epistatic). Mutations in grey or black are isolated or modestly conserved, respectively.

wt pIII N-C83 N*-C83 N2-C83 C-domain C83	MKKLLFAIPLVVPFYSHSAETVESCLAKPHTENSFTNVWKDDKTLDRYANYEGCLWNATG MKKLLFAIPLVVPFYSHSAETVESCLAKPHTENSFTNVWKDDKTLDRYANYEGCLWNATG MKKLLFAIPLVVPFYSHSAETVESCLAKPHTENSFTNVWKDDKTLDRYANYEGCLWNATG MKKLLFAIPLVVPFYSHSAETVG	60 60 23 23 23
wt pIII N-C83 N*-C83 N2-C83 C-domain C83	VVVCTGDETQCYGTWVPIGLAIPENEGGGSEGGGSEGGGSEGGGTKPPEYGDTPIPGYTY VVVCTGDETQCYGTWVPIGLAIPENEGGGSEGGGSEGGGSEGGGGTKPPEYGDTPIPGYTY VVVCTGDETQCWVPIGLAIPENEGGGSEGGGSEGGGSEGGGTKPPEYGDTPIPGYTY GGSEGGGTKPPEYGDTPIPGYTY	120 120 117 46
wt pIII N-C83 N*-C83 N2-C83 C-domain C83	INPLDGTYPPGTEQNPANPNPSLEESQPLNTFMFQNNRFRNRQGALTVYTGTVTQGTDPV INPLDGTYPPGTEQNPANPNPSLEESQPLNTFMFQNNRFRNRQGALTVYTGTVTQGTDPV INPLDGTYPPGTEQNPANPNPSLEESQPLNTFMFQNNRFRNRQGALTVYTGTVTQGTDPV INPLDGTYPPGTEQNPANPNPSLEESQPLNTFMFQNNRFRNRQGALTVYTGTVTQGTDPV	180 180 177 106
wt pIII N-C83 N*-C83 N2-C83 C-domain C83	KTYYQYTPVSSKAMYDAYWNGKFRDCAFHSGFNEDPFVCEYQGQSSDLPQPPVNAGGGSG KTYYQYTPVSSKAMYDAYWNGKFRDCAFHSGFNEDPFVCEYQGQSSDLPQPPVNAGGGSG KTYYQYTPVSSKAMYDAYWNGKFRDCAFHSGFNEDPFVCEYQGQSSDLPQPPVNAGGGSG KTYYQYTPVSSKAMYDAYWNGKFRDCAFHSGFNEDPFVCEYQGQSSDLPQPPVNAGGGSG	240 240 237 166
wt pIII N-C83 N*-C83 N2-C83 C-domain C83	GGSGGGSEGGGSEGGGSEGGGSEGGGSGGGSGSGGGSGSGDFDYEKMANANKGAMTENADENALQS GGSGGGSEGGGSEGGGSEGGGSEGGGSGGGS	300 271 268 197 48
wt pIII N-C83 N*-C83 N2-C83 C-domain C83	DAKGKLDSVATDYGAAIDGFIGDVSGLANGNGATGDFAGSNSQMAQVGDGDNSPLMNNFR SQMAQVGDGDNSPLMNNFR SQMAQVGDGDNSPLMNNFR SQMAQVGDGDNSPLMNNFR DAKGKLDSVATDYGAAIDGFIGDVSGLANGNGATGDFAGSNSQMAQVGDGDNSPLMNNFR QMAQVGDGDNSPLMNNFR ******************	360 290 287 216 108 41
wt pIII N-C83 N*-C83 N2-C83 C-domain C83	QYLPSLPQSVECRPFVFGAGKPYEFSIDCDKINLFRGVFAFLLYVATFMYVFSTFANILR QYLPSLPQSVECRPFVFGAGKPYEFSIDCDKINLFRGVFAFLLYVATFMYVFSTFANILR QYLPSLPQSVECRPFVFGAGKPYEFSIDCDKINLFRGVFAFLLYVATFMYVFSTFANILR QYLPSLPQSVECRPFVFGAGKPYEFSIDCDKINLFRGVFAFLLYVATFMYVFSTFANILR QYLPSLPQSVECRPFVFGAGKPYEFSIDCDKINLFRGVFAFLLYVATFMYVFSTFANILR QYLPSLPQSVECRPFVFGAGKPYEFSIDCDKINLFRGVFAFLLYVATFMYVFSTFANILR	420 350 347 276 168 101
wt pIII N-C83 N*-C83 N2-C83 C-domain C83	NKES 424 NKES 354 NKES 351 NKES 280 NKES 172 NKES 105	

Supplementary Figure 5. Sequence alignment of pIII-neg candidates and wild-type pIII. ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>) was used to align all pIII-neg candidates against full-length pIII.

Name	Class	Antibiotic	Origin of	Promoter	Gene
		Resistance	Replication		
pJC148i2	AP	Carb	SC101	P _{tet}	gIII-luxAB
pJC156a2	AP-neg	Spect	colEI	P _{lac}	C-domain-Venus
pJC156c2	AP-neg	Spect	colEI	P _{lac}	C83-Venus
pJC156j2	AP-neg	Spect	colEI	P _{lac}	N1-N2-C83-Venus
pJC156m2	AP-neg	Spect	colEI	P _{lac}	N2-C83-Venus
pJC156o2	AP-neg	Spect	colEI	P _{lac}	N1*-N2-C83-Venus
pJC173b	AP	Carb	SC101	P _{T7}	gIII-luxAB
pJC173c	AP	Carb	SC101	P _{T7}	6xHisTag-gIII-luxAB
pJC173e4	AP	Carb	SC101	P _{T7}	luxAB
pJC173f-R5	AP	Spect	colEI	P _{T7}	TheoRibo-6xHisTag-gIII-
-		-			Venus
pJC173g-SD8	AP-neg	Spect	pUC	P _{T7}	N1*-N2-C83-Venus (strong
		-	-		RBS)
pJC174c-R5	AP	Spect	colEI	P _{T3}	TheoRibo-6xHisTag-gIII-
-		-			Venus
pJC174e4	AP	Carb	SC101	P _{T3}	luxAB
pJC174f	AP	Carb	SC101	P _{T3}	6xHisTag-gIII-luxAB
pJC174k	AP	Carb	SC101	P _{T3}	6xHisTag-gIII-luxAB
					(weak RBS)
pJC175e	AP	Carb	SC101	P _{psp}	gIII-luxAB
pJC175g	AP	Carb	SC101	P _{psp-tetO}	gIII-luxAB
pJC175h	AP	Carb	SC101	P _{psp-tet}	gIII-luxAB
pJC175k	AP	Carb	SC101	P _{psp-tetO3}	gIII-luxAB
pJC175m	AP	Carb	SC101	P _{psp-tetO5}	gIII-luxAB
pJC175n	AP	Carb	SC101	P _{psp-tetO6}	gIII-luxAB
pJC184	MP	Chlor	CloDF13	P _{BAD}	dnaQ926-umuD'-umuC-
-					recA730
pJC184c-rrnB	AP	Chlor	CloDF13	P _{psp}	gIII
pJC184d5	DP	Chlor	CloDF13	P _{BAD} /	dnaQ926-umuD'-umuC-
				P _{psp-tet}	recA730 / gIII
pJC184d-Spect	AP	Chlor	CloDF13	P _{psp-tet}	gIII
SP-T7 _{WT}	SP	Kan	fl	P _{gIII}	wt T7 RNAP
SP-T7 _{SP}	SP	Kan	f1	P _{gIII}	T7 RNAP mutant L2-48.3
SP-T7 _{Pr}	SP	Kan	f1	P _{gIII}	T7 RNAP mutant L1-192.2

Supplementary Table 1. List of plasmids used in this work.

Supplementary References

1 Cheetham, G. M., Jeruzalmi, D. & Steitz, T. A. Structural basis for initiation of transcription from an RNA polymerase-promoter complex. *Nature* **399**, 80-83, doi:10.1038/19999 (1999).