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INTRODUCTION: Despite the complexity of
antibiotic lethality, canonical mechanisms of
resistance are generally grouped into three
broad categories: target modification, drug
inactivation, and drug transport. Although
metabolism has been shown to actively con-
tribute to antibiotic lethality, antibiotic resistance
mutations are infrequently identified in meta-
bolic genes, and metabolic dysregulation is
not a commonly citedmechanism of antibiotic
resistance. One explanation is that previous
approaches provide a limited view of the anti-
biotic resistance landscape. Indeed, laboratory
evolutions paired with sequencing candidate
genes and/or a small number of clonal isolates
per condition highlight mutations that are
either expected, or repeatedly occur, at high
frequency. Moreover, antibiotic-mediated effects
on bacterial metabolism involve numerous,
complex, and coordinated biomolecular net-
works, whichmakes it challenging to predict
candidates of likely resistance a priori. Addi-
tionally, the diversity of involved pathways
increases the number of possible evolutionary
outcomes, which reduces the likelihood for
convergent mutations, and thus would be
readily missed using previous methods. As
a result, genetic mechanisms of antibiotic

resistance related to metabolism are signif-
icantly understudied.

RATIONALE: The importance of population-level
analyses for understanding the evolutionary
landscape in response to drug treatment is
becoming increasingly recognized. Low-frequency
mutantsmake upmost genetic diversity within
a population, and in many cases, beneficial
mutations may drift to extinction before be-
coming established. This is particularly rele-
vant for genes involved in cellularmetabolism,
in which the diverse array of metabolic path-
ways can lead to a myriad of potential evolu-
tionary outcomes compared with canonical
drug targets. As such, we sought to use a more
comprehensive view afforded by both pop-
ulation and clonal analyses to elucidate
metabolic aspects of antibiotic resistance.
Moreover, considering these constraints,
typical laboratory evolution protocols and
their analysis methods are not optimized
to detect mutations in metabolism-related
genes. Constant antibiotic exposure im-
poses growth-dependent selection, and a
lack of metabolic-specific selection pres-
sure further minimizes the likelihood of
enriching for metabolic-specific pathways

and processes. Thus, we reasoned that
maximizing metabolic rather than growth
adaptation would allow us to shift these
dynamics and further tease out antibiotic-
specific metabolic variants.

RESULTS: We sequenced and analyzed
Escherichia coli adapted to three representative
antibiotics at increasingly heightened meta-
bolic states. Doing so revealed a variety of
underappreciated noncanonical genes, such
as those related to central carbon and energy
metabolism, which are implicated in antibi-
otic resistance. These mutations in metabolic
genes often arose in multiple independent
populations and/or in response to more than
one drug. Several of the identifiedmetabolism-
specific mutations are overrepresented in
the genomes of >3500 clinical E. coli patho-
gens at levels similar to, and in some cases
greater than, known resistance mutations
indicating their clinical relevance. To evalu-
ate whether these metabolic mutations con-
fer resistance, we chose a representative
subset of both genes related to metabolism
and classic resistance on the basis of their
prevalence and clinical significance. We
expressed the wild-type and mutant var-
iants of each gene from a medium-copy
plasmid introduced into the correspond-
ing chromosomal knockout strain. In all
cases, metabolic mutations increased the
minimum inhibitory concentration to at
least one, and in many cases more than
one, of the antibiotics. Finally, phenotypic
and genotypic analyses of one representative
mutation in the 2-oxoglutarate dehydrogenase
(sucA) enzyme provides a preliminary picture
of how altered metabolism gives rise to anti-
biotic resistance: Lower basal respiration
prevents antibiotic-mediated induction of
tricarboxylic acid cycle activity, thereby avoid-
ingmetabolic toxicity andminimizing lethality.

CONCLUSION: Our findings that metabolic
mutations arise in response to antibiotic
treatment, and that these mutations confer
resistance and are highly prevalent in clinical
pathogens, suggests that the three general
antibiotic resistance categories may not be as
representative, nor themechanisms as compre-
hensive, as previously thought. Indeed, meta-
bolic adaptation may represent a separate
class of resistance mechanisms beyond confer-
ring tolerance, whereby cells also alter their
metabolic response to mitigate downstream
toxic aspects of antibiotic lethality.▪
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Altered metabolic state confers antibiotic resistance. Cells were exposed to high antibiotic concentrations
(red) for short durations under incrementally increasing metabolic states (blue), separated by rounds of drug-free
growth (small flasks). Left to right indicates evolutionary time. Initially, antibiotic-mediated metabolic stimulation
partially contributes to cell lethality (sensitive cell). Evolved cells acquire resistance caused by decreased basal
metabolic activity that avoids antibiotic-mediated stimulation and subsequent lethality (resistant cell).
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confer antibiotic resistance
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Although metabolism plays an active role in antibiotic lethality, antibiotic resistance is generally
associated with drug target modification, enzymatic inactivation, and/or transport rather than metabolic
processes. Evolution experiments of Escherichia coli rely on growth-dependent selection, which may
provide a limited view of the antibiotic resistance landscape. We sequenced and analyzed E. coli adapted
to representative antibiotics at increasingly heightened metabolic states. This revealed various
underappreciated noncanonical genes, such as those related to central carbon and energy metabolism,
which are implicated in antibiotic resistance. These metabolic alterations lead to lower basal respiration,
which prevents antibiotic-mediated induction of tricarboxylic acid cycle activity, thus avoiding metabolic
toxicity and minimizing drug lethality. Several of the identified metabolism-specific mutations are
overrepresented in the genomes of >3500 clinical E. coli pathogens, indicating clinical relevance.

C
anonical mechanisms of antibiotic re-
sistance are associated with drug target
modification, transport, or enzymatic
inactivation (1, 2). Antibiotic resistance
mutations are infrequently identified in

metabolic genes, and metabolic dysregulation
is not a commonly cited mechanism of anti-
biotic resistance, although metabolism has
been shown to actively contribute to antibiotic
lethality (3–5). Previous approaches may pro-
vide a limited view of the antibiotic resistance
landscape (6–9) because they investigated can-
didate genes and/or a small number of clonal
isolates (one to three) per condition (10–12)
and highlighted mutations that are either
expected or repeatedly occur at high frequency
under these conditions (13, 14). Moreover,
antibiotic-mediated effects on bacterial metab-
olism involve numerous, complex, and co-
ordinated biomolecular networks, which makes
it challenging to predict candidates of likely
resistance a priori. Additionally, metabolic

genes involved in antibiotic lethality are located
downstream relative to primary drug targets,
which may lead to a decreased likelihood of
convergent mutations and therefore a higher
probability of being overlooked with conven-
tional methods (15, 16). Finally, because natural
selection environments are more complex than
their simplified experimental counterparts, in
vitro mutation frequencies do not necessarily
capture those present in the clinical setting.
The importance of population-level analyses

for understanding the evolutionary landscape
in response to drug treatment is becoming
increasingly recognized (6, 17, 18). Low-frequency
mutantsmake upmost genetic diversity within
a population, and in many cases, beneficial
mutations may drift to extinction before be-
coming established (19). This is particularly
relevant for genes involved in cellular metab-
olism, in which the diverse array of metabolic
pathways can lead to a myriad of potential
evolutionary outcomes compared with canon-
ical drug targets.
The ubiquitous role of metabolism within

the cellular context means that even muta-
tions that confer resistance may result in com-
paratively small increases in overall fitness
and therefore have a minimal likelihood of
being identified. Indeed, application of a math-
ematical model revealed that the frequency
of a metabolic mutant is expected to be far
lower than that of a canonical one after
multiple rounds of growth during antibiotic
selection (fig. S1A) (20, 21). Considering
these constraints, typical laboratory evolution
protocols and their analysis methods are not
optimized to detect mutations in metabolism-
related genes. As such,we reasoned that amore
comprehensive view afforded by both popula-

tion and clonal analyses would elucidate meta-
bolic aspects of antibiotic resistance (22).

Evolving antibiotic resistance using the
classical approach

To test this idea, we first evolved the Escherichia
coli strain BW25113 (table S1) to the three
representative bactericidal drugs, strepto-
mycin (strep), ciprofloxacin (Cipro), and
carbenicillin (carb), along with an untreated
control, using the classical approach (6, 23).
Briefly, three replicate populations for each
condition were inoculated in a 96-well plate
and grown inMOPS EZRich DefinedMedium
(Teknova, #M2105; hereafter referred to as “rich
medium”) at 37°C (Fig. 1A). Every 24 hours
(~10 generations), the optical density at 600 nm
(OD600) was measured and populations were
diluted 500× into fresh medium. After one
cycle in the absence of antibiotic (24), the
concentration was increased daily in fixed
increments of 85%, starting at 0.085× the
minimum inhibitory concentration required to
inhibit 50% of cells (MIC50) on day 0, reaching
1× MIC50 on day 4, and ending at 40× MIC50
on day 10, consistent with previous reports (11)
(table S2 and fig. S1B). We chose a strong con-
centration gradient to increase the likelihood
of selecting for typical variants (25); this gradient
was expected to surpass the adaptation limit
at higher concentrations. Indeed, extinction
began on day 5 (1.85× MIC50), as indicated
by the reduction in OD600 (Fig. 1B), at which
point glycerol stocks were frozen daily. At the
end of 10 days, all frozen samples were revived
in antibiotic-free medium, and the end points
were determined from the last day that each
population was able to recover. This terminal
day differed for each population depending
on both the lineage and the drug (Fig. 1C);
none of the drug-treated populations sur-
vived until day 10, whereas all control popu-
lations did.
To characterize trends across drug treat-

ments, we selected the population that sur-
vived to the highest antibiotic concentrations
and also had the highest cell density if more
than one population reached the same antibi-
otic concentration from each drug group. From
these populations, we isolated 41 total clones
[n = 12 per drug, n = 4 per no-drug control,
and n = 1 wild-type (WT)] (Fig. 1C). Individual
clones from all drug conditions displayed
variability in growth rates and, on average,
grew slower compared with both the untreated
adapted control and WT strains (Fig. 1D, left,
and fig. S1C). This is consistent with a stepwise
evolution of resistance mutations that can im-
pose a fitness cost (26). Moreover, on average,
the 12 clones from each of the three terminal
populations exhibited an increase inMIC (Fig.
1E); however, as with growth rates, individual
MICs also appeared variable, likely dependent
on the specific genotype.
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To test how representative these 12 clones
were of their evolved lineages, we also charac-
terized the population samples; these expe-
riments were initiated using a 500× dilution
frompartially thawed glycerol stocks to ensure

consistency between replicates. Population-
level measurements generally supported the
average phenotypes of all 12 clones. Each
population grew more slowly (Fig. 1D, right)
and their MIC increased between four- and

10-fold compared with the WT for all drug
conditions (Fig. 1E). Population MICs were
overall higher than MICs of individual
clones (27).

Identifying genetic changes associated with
antibiotic resistance

We next sought to determine the genetic
changes that contributed to the observed pheno-
types. To do so, we sequenced all replicate
populations from day 5, which corresponded
to populations evolved to concentrations of
MIC50, as well as the terminal population from
each lineage if that corresponded to a different
concentration, making up 20 total populations.
We also sequenced the 41 clones as described
above (Fig. 1F and table S3). Pilon (28) was used
to identify genetic changes in each population
down to frequencies of 2% with a minimum
threshold of five reads; this strict threshold
requires greater coverage to detect lower-
frequency changes at a similar confidence
level (table S4).
We tabulated the total number of genomic

changes per sample [large indels and single
nucleotide polymorphisms (SNPs) at various
frequency levels]. SNPs were grouped into
categories by Pilon as either passing ormidlevel
(i.e., >~90% or ~25 to 90%, respectively) and
low frequency (~2 to 25%). Overall, total
genomic changes per sample increased over
time, from 28 on day 5 to 64.5 at the final time
point (Fig. 1G), consistent with our expectations.
Further evaluation of these samples by

treatment group revealed that both individual
clones and populations had a similar number
of averagemutations per sample (Fig. 1H, left).
However, populations had a greater number of
unique mutations per sample compared with
the clonal isolates (Fig. 1H, right) regardless
of whether SNPs in the control group or SNPs
at lower frequencies were included in the
clonal analysis (fig. S2, A and B). This finding
highlights the overrepresentation of high-
frequency variants, and the resulting loss of
information, from clonal analysis alone.
Examination of passing SNPs from the clonal

isolates revealed that high-frequencymutations
(e.g., those present in >90% of clones) were
consistentwith known resistancemechanisms
(Fig. 1I). For example, 92% of Cipro-treated
clones had mutations in the drug’s target
(encoded by gyrA or gyrB) and 100% had
acquired mutations in rob, which encodes
for a known global transcriptional regulator
of multidrug resistance and stress response.
However, a subset of clones acquired muta-
tions that were noncanonical and, in several
cases, related to central metabolic processes.
For example, two clones (16.7%) hadmutations
in icd, which encodes for a core metabolic
enzyme involved in oxidizing isocitrate during
the tricarboxylic acid (TCA) cycle. Other genes
that appeared in only one of 12 clones were
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Fig. 1. Classic evolution schematic and characterization. (A) Evolution schematic. Triplicate populations
were treated with no antibiotic, strep, carb, or Cipro at increasing concentrations from 0.08× to 40× MIC50
over 11 days (days 0 to 10). (B) Daily OD600 measurements. Shaded color represents SD of three
population replicates. The colors yellow, green, blue, and red indicate control, strep, Cipro, and carb,
respectively. (C) Frozen samples of all populations starting on day 5 until day 10 were revived in
drug-free medium to identify the terminal population per condition (highlighted square). Heatmap shading
from purple to orange indicates OD600 levels from low to high, respectively. (D) Growth rates of
12 individual clones (left) or whole populations (right). Growth rates were normalized to the average growth
rate of the untreated control (dashed black line for reference). Bars represent average of either 12 clones
(left) or three biological replicates (right), and error bars indicate SD. (E) MICs of clones and populations.
Bolded gray, orange, and purple lines indicate averages of three WT strain replicates, 12 clones, or three
terminal population replicates, respectively. The 12 individual clones are shown in thin orange lines, and
shading indicates the SD for WT and population samples. (F) Sequencing sample overview. Each number
corresponds to the number of samples sequenced for population (P) or clonal (C) samples. (G) Mutations
summary. Mutations include indels and SNPs at frequencies determined by Pilon (passing >~90%; midlevel
~25 to 90%; low ~0.2 to 25%). SNPs per sample are summed across all samples at each time point.
(H) Total SNPs per population compared with clonal samples (left). Unique SNPs per population
compared with clonal samples (right). (I) Passing SNPs per gene in sequenced clones. (J) KEGG
Orthology and BRITE hierarchy classification for broad functional categories; n is the number of genes
per category, and the y-axis is the percentage of all genes grouped into the corresponding category.
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also involved in core metabolic processes (e.g.,
purH and fre). We observed similar results for
strep; most high-frequency mutations were
related to drug targets [e.g., tufA, which en-
codes the elongation factor Tu (29, 30)]. How-
ever, others were directly involved in cellular
metabolism; for example, 100% of the clones
had mutations in fre encoding the electron
carrier flavin reductase, which is critical for
sensitivity to reactive species in the cell (31).

Treatment with carb appeared to result in
less diverse clonal variants because the 12 isolates
carriedmutations in only three genes; of those
with known function, both were canonical
(the multidrug efflux transporter encoded by
acrD and the sensory histidine kinase encoded
by envZ).
Several high-frequency mutations from clo-

nal isolates were present in replicate popula-
tions aswell, consistentwith highly constrained

evolutionary trajectories associated with classic
resistance mechanisms (fig. S3) (14). By con-
trast, metabolic mutations from the clonal
isolates were not necessarily present in all
populations, even in cases where they became
fixed in a single one. Moreover, although popu-
lations revealed additional metabolic genes of
interest, these mutations still occurred at low
frequency. Using KEGG Orthology combined
with BRITE hierarchies, we classified the func-
tion of all gene hits from clonal and popula-
tion samples into the broad categories of (i)
“Genetic processing,” (ii) “Environmental pro-
cessing,” (iii) “metabolism,”and/or (iv) “(signaling
and) Cellular processes” (table S5). Note that
not all genes are annotated with these data-
bases. However, antibiotic- and metabolism-
specific processes are highly represented, and
~80% (48) of all genes could be classified in
this way. Genetic processing accounted for the
largest percentage of all mutations (~36%)
in 11 genes. This was expected because this
category includes classicmechanisms of resist-
ance that occurred at high frequency (Fig. 1J).
By contrast, “Metabolism” only accounted for
~29% of mutations despite occurring in 24 total
genes because of the lower frequency of each.

Evolving antibiotic resistance using a
metabolic-dependent approach

The presence of metabolic mutations suggests
their potential, and heretofore underappreci-
ated, involvement in the adaptive response to
antibiotic treatment. However, these muta-
tions were challenging to interpret because
they occurred at relatively low frequencies
and with greater diversity than those associ-
ated with canonical resistance mechanisms.
Indeed, classical evolution experiments are
not necessarily designed to isolate metabolic
variants: Constant antibiotic exposure impo-
ses growth-dependent selection, whereas a
lack of metabolic-specific selection pressure
further minimizes the likelihood of enriching
for metabolic-specific pathways and/or pro-
cesses.We reasoned thatmaximizingmetabolic
rather than growth adaptation would allow us
to shift these dynamics and further tease out
antibiotic-specific metabolic variants. To test
this idea, we designed and implemented an
alternative evolution protocol consisting of
short-term drug exposure at incrementally
increasing metabolic activities, separated by
rounds of drug-free growth, to minimize
growth-dependent selection and lineage ex-
tinction (Fig. 2A). Indeed, unlike in the classic
protocol, the OD600 remained stable through-
out the experiments (Fig. 2B). We chose 1 hour
for the treatment duration because survival
over this time window was sufficient to dis-
criminate resistant from sensitive populations
(Fig. 2C) while minimizing growth during
treatment. As a proof-of-concept, temperature
was used to control metabolic activity during
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Fig. 2. Metabolic evolution leads to acquired resistance with no obvious growth defect. (A) Evolution
schematic. Triplicate populations were treated with no antibiotic, strep, carb, or Cipro for a total of
11 days at 40× MIC50 for 1 hour at increasing metabolic states. Thirty minutes before antibiotic treatment, cells
were equilibrated to a temperature that increased daily in 1°C increments beginning on day 0 at 20°C and
concluding on day 10 at 30°C. After antibiotic treatment, cells were washed 2× in PBS and grown analogously
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1-hour treatment for the WT compared with terminal populations evolved through the classic evolution protocol.
All experiments were performed at 30°C. Bars represent average of three biological replicates, and error bars
indicate SD. (D) Survival over the 1-hour treatment for the WT compared with terminal populations evolved
through the metabolic evolution protocol for rich medium (left) and minimal medium (right) conditions. All
experiments were performed at 30°C. Bars represent average of three biological replicates, and error bars indicate
SD. (E) Growth rates of each terminal population from rich medium (left) and minimal medium (right)
conditions. One population per treatment group was tested in three independent biological replicates. Results are
normalized to the untreated control (black dashed line). Bars represent the average of three biological replicates,
and error bars indicate SD. (F) Lag times of individual clones evolved in either rich medium (left) or minimal
medium (right). Lag times were calculated analogously to ScanLag. At least 65 clones were measured for each
condition. Violin plots are shown for each distribution; black dotted line indicates the median, and solid line is
the mean of the samples. (G) Growth rates for populations evolved in either rich medium (left) or minimal medium
(right). OD600 (y-axis) is shown over time in hours (x-axis) obtained at intervals of 15 min for 18 hours. Lines
are the average of three biological replicates, and error bars are the SD. Black lines are the WT strain.
(H) Mutations summary. Mutations include indels and SNPs at frequencies determined by Pilon (passing >~90%;
midlevel ~25 to 90%; low ~0.2 to 25%). SNPs per sample are summed across all samples at each time point.
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antibiotic exposure because it is an established
modulator of basal metabolic activities. The
temperature was fixed 30 min before and
throughout the duration of the treatment (con-
trol and each antibiotic); 30 min was sufficient
for transcriptional adaptation (32). Temper-
ature was increased daily in increments of
1°C (20 to 30°C from day 0 to day 10). After
treatment, cells were washed 2× in phosphate-
buffered saline (PBS) and grown overnight for
22 hours at 37°C. Otherwise, this protocol re-
mained identical to that shown in Fig. 1A.
We implemented this evolutionary experi-

ment with rich medium, as with the previous
evolution trajectory, and MOPS Minimal Me-
dium (Teknova#M2106; hereafter referred to as
“minimalmedium”) supplemented with 0.04%
glucose to further constrain metabolism. The
terminal populations from both conditions
exhibited increased survival over the 1-hour kill-
ing window at 30°C, suggesting either acquired
resistance or tolerance (Fig. 2D). These evolved
populations exhibited no reduction in exponen-
tial growth rates (P > 0.1, Student’s t test; Fig.
2E), ruling out tolerance caused by slow growth
(33). Moreover, using a method analogous to
ScanLag (34), single-colony analysis revealed
no significant increase in lag time (P > 0.1,
Student’s t test; Fig. 2F). These results suggest
that the increased survival was due to acquired
resistance and not to tolerance by lag. Indeed,
populations grew faster at antibiotic concen-
trations of MIC50 for both medium conditions
compared with the WT (Fig. 2G), indicating
acquired resistance. Populations adapted to rich
medium exhibited increases in their MIC
(fig. S4A); although theMIC did not increase
at the population level for minimal medium,

analysis of 96 individual clones revealed that,
on average, isolates exhibited an increase
in MIC compared with the ancestral strain
(fig. S4B).

Identifying genetic changes associated with
metabolic-dependent antibiotic adaptation

We sequenced all terminal populations from
each drug group, along with the midpoint
populations and 12 clonal isolates per anti-
biotic (rich medium) (fig. S5A). The data were
analyzed with the same previous pipeline
(table S6). Overall, clonal isolates had fewer
fixedmutations andmore low-frequencymuta-
tions compared with the classic evolution expe-
riments (Fig. 2H and fig. S5B). Combined, the
samples exhibited a rich diversity of metabolic
mutations, and unlike the previous results,
several of these mutations occurred across
multiple conditions (population and/or drug)
(fig. S5C). For example, all three carb-treated
populations accumulated mutations in the
gene encoding for glutamate synthase, gltB,
and one of three also acquired mutations in
gltD and/or gltA. Similarly, two of the three
Cipro-treated populations acquired mutations
in icd, consistent with earlier observations.
Fewer canonical mutations occurred.
Our metabolic evolution protocol was spe-

cifically designed to ensure equivalent selec-
tion dynamics (e.g., growth or no-growth cycles)
for all conditions: At low metabolic activity
(e.g., 20°C), growth was minimal, whereas at
high metabolic activity (e.g., 30°C), all four
conditions exhibited similar increases in
biomass caused by either normal growth (con-
trol) or acquired resistance (drug-treated) (fig. S5,
D and E). Despite the minimal growth observed,

there remains a possibility that growth-
based selection occurs during this cyclic treat-
ment. To further validatewhethermutations in
metabolic genes arose from the cycling protocol
rather than from the antibiotic treatment,
we implemented a secondmetabolic evolution
experiment in which temperature was main-
tained at 20°C for each treatment (referred to
as TStat) but was otherwise identical to the
original protocol (TInc) (fig. S6, A and B). Any
overlap in mutations between TStat control
and TInc drug-treated groups, would suggest
adaptation caused by growth cycles rather
than antibiotic treatment. Sequencing the three
terminal populations revealed mutations in
19 unique genes: two from the control, seven
from Cipro, eight from strep, and four from
carb treatment (table S7). One control gene
also occurred in the TInc control and thus
was already excluded from analysis, whereas
the other was not found in any TInc condi-
tion. Moreover, ~77% (13) of genes from the
antibiotic-treated groups were identical to
those identified from TInc treatment, although
at lower frequency. This result was likely due
to the reduced metabolic selective pressure.
These results further confirm that mutations
identified using this approach are specific to
the antibiotic treatment under this unique
protocol.

Gene Ontology differs between
evolution experiments

Having confirmed the antibiotic specificity of
these mutations, we next used Gene Ontology
(GO) enrichment analysis to compare the bio-
logical processes that were significantly af-
fected between the classic and metabolic
evolutions.We combined all unique genes across
both media from the temperature-increasing
metabolic evolution to enable statistical com-
parisons (Fig. 3A). Among the genes identified
from the classic evolution, “response to anti-
biotics” was the most significantly enriched
biological process (n = 9, P = 4 × 10–5, Fisher’s
exact test), as expected (Fig. 3B). From the
metabolic evolution, the most significantly
enriched biological process was “generation
of precursor metabolites and energy” (n = 11,
P = 1 × 10–4, Fisher’s exact test) (Fig. 3C).
Almost all other significantly enriched pro-
cesses (P < 0.01, Fisher’s exact test) from the
metabolic evolution were also directly related
to cellularmetabolism, including but not limited
to glutamate synthesis, respiration, and elec-
tron transport chain (table S8). Overall, and
consistent with both our hypothesis and liter-
ature, the occurrence of parallel metabolic
mutations suggests the importance of modu-
lating metabolism as an adaptive strategy
against antibiotic stress.
It is unsurprising that each protocol en-

riched different functional classes of muta-
tions. However, because neither protocol
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Fig. 3. Gene Ontology (GO) enrichment analysis differs between evolutions. (A) Pooling metabolic
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necessarily reflects realistic clinical environ-
ments, the prevalence of these mutations in
clinical strains is a better indicator of their
relevance. To investigate this, we analyzed a
library of 7243 E. coli genomes from NCBI

Pathogen Detection (table S9). Specifically, we
calculated the total abundance of each of 109
coding sequence mutations identified from
both evolution experiments and compared the
frequency in isolates classified as clinical (n =

3700) with those classified as environmental or
other (n = 3543) (fig. S7A). Variation in gyrA
S83 and D87 was used as the baseline for
comparison because the clinical prevalence
of these nine variants is well established
(35, 36). Overall, ~20% of strains had at least
one mutation in S83 (~18% gyrA S83L and
1.5% gyrA S83A), and ~12% of the strains had
at least one mutation in D87 (gyrA D87N)
(table S10). Only two of the six gyrA loci were
statistically overrepresented in clinical iso-
lates. For example, S83L is one of the most
common variants associated with quinolone
resistance (37). However, despite occurring in
1332 f 7319 strains, only 673 were designated
as clinical (P = 0.23, Fisher’s exact test; Fig.
4A). This highlights that the NCBI clinical or
environmental strain designation likely does
not distinguish between strains based on
previous antibiotic exposure. Rather, the
known importance of gyrA suggests that
mutation prevalence alone indicates a potential
clinical impact, and further enrichment in
clinical isolates highlights a potent subset
of clinically relevant mutations; this was
consistentwith canonicalmutations identified
in our study (e.g., ompF and acrD). Overall, 67
of the 109 mutations were not identified in
any of the 7234 genomes. The remaining 42
were present in at least one, and up to 7068,
of the isolates (fig. S7B). Several mutations in
metabolic genes were abundantly present at
levels similar to, and in some cases greater
than, gyrA (Fig. 4A). As with gyrA, some
were statistically enriched in clinical isolates
(P < 0.01, Fisher’s exact test), suggesting their
clinical relevance.

Knockout and overexpression confirm genetic
underpinnings of antibiotic resistance

To evaluatewhether thesemetabolicmutations
confer resistance, we chose a representative
subset of both genes related to metabolism
(sucA, gltD, ushA, icd, ycgG, and yidA) and
classic resistance (ompF, acrD, and gyrA) on
the basis of their prevalence and clinical sig-
nificance (Fig. 4A, stars). We expressed the
WT and mutant variants of each gene from a
medium-copy plasmid (pAB) introduced into
the corresponding chromosomal knockout strain;
these MICs were compared with the WT car-
rying pAB191, which expresses the innocuous
gene lacZ to account for any plasmid-specific
effects. In all cases, metabolic mutations in-
creased the MIC to at least one, and in many
cases more than one, of the antibiotics (Fig.
4B). These trends were confirmed by mea-
suring growth inhibition (fig. S8); in all cases,
metabolic mutants were resistant to at least
one of the antibiotics, consistent with cor-
respondingMIC levels. The plasmid-expressed
WT metabolic genes in many cases also in-
creased resistance, whereas the knockout
strain carrying pAB191 exhibited heightened
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drug sensitivity (fig. S9, top); this is in contrast
to the classic genes, in which expression of the
WT gene from the plasmid often increased
sensitivity compared with the knockout strain
carrying pAB191 (fig. S9, bottom). This sug-
gests that metabolic mutations may influence
expression levels and/or catalytic activity rather
than protein structure or function, although
such mechanistic effects remain to be tested.
Overall, these results indicate that these
clinically relevant metabolic variants indeed
confer resistance.
Because both canonical and metabolic mu-

tation types confer, on average, similar levels
of resistance and neither one introduces sig-
nificant fitness burdens in these experimental
conditions, it is possible they each may be
selected for independently. Moreover, fluctua-
tion tests revealed that the WT strain muta-
tion rate was statistically identical to that of
the representative canonical and metabolic
mutants ompF and sucA (fig. S10), respectively,
suggesting that neither mutation type made a
strain more likely to acquire additional muta-
tions. In addition, bioinformatic analysis re-
vealed that mutation acquisition (canonical or
metabolic) did not preferentially predispose
strains to acquire an additional mutation of
either type (table S11). Thus, although theremay
indeed be a temporal relationship between the
emergence of mutation types, these findings
indicate that neither one necessarily favors
the occurrence of the other.
Finally, we sought to gain insights into the

mechanism(s) by which altered metabolism
may confer antibiotic resistance. It is known
that antibiotic-stimulated metabolic activity
results in the formation of toxic metabolic
species that contribute to drug lethality (5, 38).
We thus reasoned that resistance could arise
from one of multiple strategies, including de-
creased sensitivity to oxidative stress or pre-
vention of antibiotic-induced stimulation of
the tricarboxylic acid (TCA) cycle. To investigate
these possibilities, we focused on the metabolic
mutation in sucA (sucAM), which confers high
levels of protection against carb.We usedRNA
sequencing to compare gene expression differ-
ences between sucAM andWT in the presence
or absence of carb treatment (tables S12 and S13).
Compared with WT cells, which exhibited a
distinct transcriptional shift in response to carb
and almost 300 differentially expressed genes
(DEGs), sucAM was indistinguishable from its
untreated control, with only 17 DEGs (fig. S11,
A and B). Hierarchical clustering and KEGG-
based pathway analysis revealed two clear
phenotypes: significant up-regulation in WT
metabolic genes in response to carb (P < 0.05,
Fisher’s exact test) and overall down-regulated
activity in core metabolic pathways such as
central and energy metabolism in sucAM com-
pared with WT regardless of the treatment
(Fig. 4C and table S14). Combined, these re-

sults suggest that sucAM resistance may occur
by bypassing carb-mediated TCA activation,
presumably linked to lower overall basal
respiration rates. Indeed, both the oxygen
consumption rate and ATP levels were sig-
nificantly lower for sucAM compared with WT
(fig. S11, C and D), consistent with reduced
respiration. Moreover, unlike the WT strain,
sucAM did not exhibit elevated NAD+/NADH
levels after carb treatment, a hallmark of hy-
peractive TCA cycle activity during oxidative
stress (fig. S11E). This combination of phe-
notypic and genotypic analyses provides a
preliminary picture of sucAM-mediated carb
resistance: Lower basal respiration prevents
antibiotic-mediated induction of TCA cycle
activity, thereby avoiding metabolic toxicity
and minimizing lethality. Given the diversity
and abundance of metabolic resistance mech-
anisms, focused approaches are needed to
determine the generality of this and other
metabolic resistance strategies.

Discussion

Despite the complexity of antibiotic lethality,
canonical mechanisms of resistance are gen-
erally grouped into only three broad catego-
ries: targetmodification, drug inactivation, and
drug transport (39, 40). Our findings that
metabolic mutations arise in response to anti-
biotic treatment, and that thesemutations con-
fer resistance and are highly prevalent in
clinical pathogens, suggests that these three
distinct categories may not be as representa-
tive, nor themechanisms as comprehensive, as
previously thought. Indeed, metabolic adapta-
tion may represent a class of resistance me-
chanismswhereby, beyond conferring tolerance,
cells alter their metabolic response to mitigate
downstream toxic aspects of antibiotic lethal-
ity. This is consistent with previous works in
which metabolic constraints limit the evolu-
tion of antibiotic resistance (41, 42). Along
these lines, even mutations considered canon-
ical, such as those in regulatory elements or
efflux systems, appeared in both the classic
andmetabolic evolutions; whether these muta-
tions arise because they reduce the concentra-
tion of bound target or minimize the stress
response that follows remains unclear.What is
known, however, is that antibiotic dynamics
in vivo are widely variable and rarely if ever
follow a simple continuous gradient. Thus,
implementing new protocols to increase the
accessible evolutionary pathways could facil-
itate the discovery of new resistance mech-
anisms and thereby enhance our ability to
limit the development and spread of antibi-
otic resistance.

Materials and Methods

A detailed description of all experimental and
computationalmethods, including the evolution
protocols, strain characterization, mutant val-

idation, sample preparation for next-generation
sequencing, modeling, and bioinformatics, can
be found in the supplementary materials (21).

Evolution protocol and strain characterization

All evolutions used the E. coli strain BW25113.
Briefly, a single colony was picked from a
streaked agar plate and grown in 3 ml of rich
medium overnight with shaking at 250 rpm.
After 16 hours, cells were diluted 500× into
fresh rich medium and aliquoted into one row
(12 wells) of a 96-well plate for each evolu-
tion. Plates were sealed with an AeraSeal film
(Sigma-Aldrich, #A9224), covered with a fitted
plastic cover, and grown for 24 hours at 37°C
with shaking at 450 rpm. For the classic evo-
lution, after the first cycle of pregrowth, cells
were diluted 500× into fresh rich medium
daily; antibiotic was added to all treatment
wells and sterile water was added to the con-
trol at the concentrations shown in table S2.
For the metabolic evolution, the protocol was
identical, with the following modifications.
After the first cycle of pregrowth and dilution
into freshmedium, cells were equilibrated to
the daily temperature for 30 min, followed
by 1 hour of drug treatment. After 1 hour of
treatment, cells were washed 2× with PBS,
resuspended in the corresponding medium,
sealed as described above, and grown at 37°C
for the remaining 22 hours with 450 rpm
agitation. Every day thereafter, the equilibra-
tion and/or treatment temperature increased
in 1°C increments until day 10, which ended at
30°C. In both cases, before the dilution every
morning, OD600 measurements were obtained
and a control row of blank medium was in-
cluded; no cell growth was observed in these
control wells throughout any evolution. The
static metabolic evolution was performed
similarly to the first metabolic evolution, with
the following changes: minimal medium was
used and during every antibiotic treatment
window, the temperature was maintained at
20°C. Otherwise, the protocol remained iden-
tical. In all cases, samples were saved daily
starting on day 5 and for every day thereafter
until day 10. Detailed protocols for quantifying
theMIC, growth rates, and survival after 1 hour
canbe found in the supplementarymaterials (21).

Genomic DNA extraction, library prep,
high-throughput sequencing, and bioinformatics

For all evolutions, populations were revived by
thawing the tops of frozen samples and dilut-
ing 1000× into 1.5ml of fresh richmedium in a
deep 96-well plate. To determine the terminal
populations in the case of the classic evolu-
tion, cells were diluted such that the top row
corresponded to the populations saved on day
5 and the bottom row corresponded to the
populations saved on day 10. OD600 measure-
ments were taken the following morning to
determine the terminal population (Fig. 1C).
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Cells from each terminal population were
streaked directly onto blank agar to acquire
individual clones. One milliliter of this over-
night culture was pelleted and frozen at –80°C
for 48 hours to be used directly for genomic
DNA (gDNA) extraction (21). Clonal plates
were grown at 37°C for 16 hours; all colonies
were grown as described for subsequent gDNA
extraction in parallel with the frozen popula-
tion samples. gDNA from individual clones,
populations, and the WT strain was extracted
using the PureLink Pro 96 Genomic DNA Kit
(#K182104). Pooled libraries were prepared
using the plexWell 384 kit supplied from
SeqWell; whole-genome sequencing was per-
formed on a HiSeq 2500 Rapid Run flow cell
with 150 base paired-end reads with an aver-
age read depth of 100× at the Broad Institute.
All bioinformatic analysis details, along with
the comparative analysis of variants to pub-
lished E. coli genomes, can be found in the
supplementary materials (21).

Mutation validation

The plasmid backbone (pAB) used for all con-
structs consists of a strong constitutive syn-
thetic promoter proD, chloramphenicol
resistance, and a p15A origin of replication.
The control plasmid, pAB191, contains the
innocuous gene lacZ under the control of
proD. All WT genes were obtained from the
E. coli genome using polymerase chain reac-
tion (PCR) and cloned into the pAB backbone
using either Gibson assembly or USER clon-
ing. All mutant variants were generated with
USER cloning. All final constructs were fully
sequenced for validation. The corresponding
knockout strains for each relevant gene were
obtained from the Keio collection. Each strain
was validated using PCR, and kanamycin re-
sistance (kanR) was removed with FLP recom-
binase (pCP20). All plasmids expressing either
the WT or mutant variants were introduced
into the strain with the corresponding gene
chromosomally deleted, except for gyrA, which
was introduced into the WT strain BW25113
because this gene is essential. All experiments
that used these strains were conducted in the
presence of 100 mg/ml chloramphenicol.

RNA sequencing, analysis, and strain validation

Strains were grown overnight as previously
described. After 16 hours, all strains were
diluted 500× into rich medium. Cells were
treated with MIC50 concentrations of the con-
trol strain and incubated at 37°Cwith 250 rpm
agitation for 1 hour. After 1 hour, cells were
flash-frozen and submitted to Medgenomics
for RNA extraction and sequencing. RNA
sequencing was performed using NovaSeq
150 base paired-end reads with 25 M total
reads per sample. All bioinformatic analysis
details can be found in the supplementary
materials (21).

REFERENCES AND NOTES

1. A. Giedraitienė, A. Vitkauskienė, R. Naginienė, A. Pavilonis,
Antibiotic resistance mechanisms of clinically important
bacteria. Medicina (Kaunas) 47, 137–146 (2011).
pmid: 21822035

2. B. A. Espedido, I. B. Gosbell, Chromosomal mutations involved
in antibiotic resistance in Staphylococcus aureus. Front. Biosci.
(Schol. Ed.) 4, 900–915 (2012). pmid: 22202098

3. J. H. Yang, S. C. Bening, J. J. Collins, Antibiotic efficacy-context
matters. Curr. Opin. Microbiol. 39, 73–80 (2017). doi: 10.1016/
j.mib.2017.09.002; pmid: 29049930

4. J. M. Stokes, A. J. Lopatkin, M. A. Lobritz, J. J. Collins,
Bacterial metabolism and antibiotic efficacy. Cell Metab. 30,
251–259 (2019). doi: 10.1016/j.cmet.2019.06.009;
pmid: 31279676

5. D. J. Dwyer et al., Antibiotics induce redox-related physiological
alterations as part of their lethality. Proc. Natl. Acad. Sci. U.S.A.
111, E2100–E2109 (2014). doi: 10.1073/pnas.1401876111;
pmid: 24803433

6. G. I. Lang, M. M. Desai, The spectrum of adaptive mutations in
experimental evolution. Genomics 104 (6 Pt A), 412–416
(2014). doi: 10.1016/j.ygeno.2014.09.011; pmid: 25269377

7. P. Charusanti et al., Exploiting adaptive laboratory evolution of
Streptomyces clavuligerus for antibiotic discovery and
overproduction. PLOS ONE 7, e33727 (2012). doi: 10.1371/
journal.pone.0033727; pmid: 22470465

8. M. Rodriguez de Evgrafov, H. Gumpert, C. Munck,
T. T. Thomsen, M. O. A. Sommer, Collateral resistance and
sensitivity modulate evolution of high-level resistance to drug
combination treatment in Staphylococcus aureus. Mol. Biol.
Evol. 32, 1175–1185 (2015). doi: 10.1093/molbev/msv006;
pmid: 25618457

9. E. Toprak et al., Evolutionary paths to antibiotic resistance
under dynamically sustained drug selection. Nat. Genet. 44,
101–105 (2011). doi: 10.1038/ng.1034; pmid: 22179135

10. S. Suzuki, T. Horinouchi, C. Furusawa, Prediction of antibiotic
resistance by gene expression profiles. Nat. Commun. 5, 5792
(2014). doi: 10.1038/ncomms6792; pmid: 25517437

11. L. J. Jahn, C. Munck, M. M. H. Ellabaan, M. O. A. Sommer,
Adaptive laboratory evolution of antibiotic resistance using
different selection regimes lead to similar phenotypes and
genotypes. Front. Microbiol. 8, 816 (2017). doi: 10.3389/
fmicb.2017.00816; pmid: 28553265

12. J. R. Dettman et al., Evolutionary insight from whole-genome
sequencing of experimentally evolved microbes. Mol. Ecol. 21,
2058–2077 (2012). doi: 10.1111/j.1365-294X.2012.05484.x;
pmid: 22332770

13. M. F. Schenk, J. A. G. M. de Visser, Predicting the evolution of
antibiotic resistance. BMC Biol. 11, 14 (2013). doi: 10.1186/
1741-7007-11-14; pmid: 23433262

14. A. Couce, A. Rodríguez-Rojas, J. Blázquez, Bypass of genetic
constraints during mutator evolution to antibiotic resistance.
Proc. Biol. Sci. 282, 20142698 (2015). doi: 10.1098/
rspb.2014.2698; pmid: 25716795

15. J. F. Matias Rodrigues, A. Wagner, Evolutionary plasticity and
innovations in complex metabolic reaction networks. PLOS
Comput. Biol. 5, e1000613 (2009). doi: 10.1371/journal.
pcbi.1000613; pmid: 20019795

16. T. Leinonen, R. J. S. McCairns, G. Herczeg, J. Merilä, Multiple
evolutionary pathways to decreased lateral plate coverage in
freshwater threespine sticklebacks. Evolution 66, 3866–3875
(2012). pmid: 23206143

17. A. Wilm et al., LoFreq: A sequence-quality aware, ultra-
sensitive variant caller for uncovering cell-population
heterogeneity from high-throughput sequencing datasets.
Nucleic Acids Res. 40, 11189–11201 (2012). doi: 10.1093/nar/
gks918; pmid: 23066108

18. J. L. Martinez, F. Baquero, Mutation frequencies and antibiotic
resistance. Antimicrob. Agents Chemother. 44, 1771–1777
(2000). doi: 10.1128/AAC.44.7.1771-1777.2000;
pmid: 10858329

19. S. F. Levy et al., Quantitative evolutionary dynamics using
high-resolution lineage tracking. Nature 519, 181–186 (2015).
doi: 10.1038/nature14279; pmid: 25731169

20. I. Levin-Reisman et al., Antibiotic tolerance facilitates the
evolution of resistance. Science 355, 826–830 (2017).
doi: 10.1126/science.aaj2191; pmid: 28183996

21. Materials and methods are available as supplementary
materials.

22. K. McElroy, T. Thomas, F. Luciani, Deep sequencing of evolving
pathogen populations: Applications, errors, and bioinformatic
solutions. Microb. Inform. Exp. 4, 1 (2014). doi: 10.1186/2042-
5783-4-1; pmid: 24428920

23. A. Wong, N. Rodrigue, R. Kassen, Genomics of adaptation
during experimental evolution of the opportunistic
pathogen Pseudomonas aeruginosa. PLOS Genet. 8,
e1002928 (2012). doi: 10.1371/journal.pgen.1002928;
pmid: 23028345

24. R. E. Lenski, M. Travisano, Dynamics of adaptation and
diversification: A 10,000-generation experiment with bacterial
populations. Proc. Natl. Acad. Sci. U.S.A. 91, 6808–6814
(1994). doi: 10.1073/pnas.91.15.6808; pmid: 8041701

25. T. Oz et al., Strength of selection pressure is an important
parameter contributing to the complexity of antibiotic
resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).
doi: 10.1093/molbev/msu191; pmid: 24962091

26. A. H. Melnyk, A. Wong, R. Kassen, The fitness costs of
antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).
doi: 10.1111/eva.12196; pmid: 25861385

27. H. H. Lee, M. N. Molla, C. R. Cantor, J. J. Collins, Bacterial
charity work leads to population-wide resistance.
Nature 467, 82–85 (2010). doi: 10.1038/nature09354;
pmid: 20811456

28. B. J. Walker et al., Pilon: An integrated tool for comprehensive
microbial variant detection and genome assembly
improvement. PLOS ONE 9, e112963 (2014). doi: 10.1371/
journal.pone.0112963; pmid: 25409509

29. D. I. Andersson, D. Hughes, Persistence of antibiotic
resistance in bacterial populations. FEMS Microbiol. Rev. 35,
901–911 (2011). doi: 10.1111/j.1574-6976.2011.00289.x;
pmid: 21707669

30. L. Pinto et al., Multiomics assessment of gene expression in a
clinical strain of CTX-M-15-producing ST131 Escherichia coli.
Front. Microbiol. 10, 831 (2019). doi: 10.3389/
fmicb.2019.00831; pmid: 31130921

31. A. N. Woodmansee, J. A. Imlay, Reduced flavins promote
oxidative DNA damage in non-respiring Escherichia coli by
delivering electrons to intracellular free iron. J. Biol. Chem. 277,
34055–34066 (2002). doi: 10.1074/jbc.M203977200;
pmid: 12080063

32. D.-E. Chang, D. J. Smalley, T. Conway, Gene expression
profiling of Escherichia coli growth transitions: An expanded
stringent response model. Mol. Microbiol. 45, 289–306
(2002). doi: 10.1046/j.1365-2958.2002.03001.x;
pmid: 12123445

33. I. Levin-Reisman, A. Brauner, I. Ronin, N. Q. Balaban,
Epistasis between antibiotic tolerance, persistence, and
resistance mutations. Proc. Natl. Acad. Sci. U.S.A. 116,
14734–14739 (2019). doi: 10.1073/pnas.1906169116;
pmid: 31262806

34. I. Levin-Reisman, O. Fridman, N. Q. Balaban, ScanLag: High-
throughput quantification of colony growth and lag time. J. Vis.
Exp. (89): (2014). doi: 10.3791/51456; pmid: 25077667

35. M. Oram, L. M. Fisher, 4-Quinolone resistance mutations in the
DNA gyrase of Escherichia coli clinical isolates identified by
using the polymerase chain reaction. Antimicrob. Agents
Chemother. 35, 387–389 (1991). doi: 10.1128/AAC.35.2.387;
pmid: 1850972

36. H. Yoshida, M. Bogaki, M. Nakamura, S. Nakamura,
Quinolone resistance-determining region in the DNA gyrase
gyrA gene of Escherichia coli. Antimicrob. Agents Chemother.
34, 1271–1272 (1990). doi: 10.1128/AAC.34.6.1271;
pmid: 2168148

37. J. Vila et al., Association between double mutation in gyrA
gene of ciprofloxacin-resistant clinical isolates of Escherichia
coli and MICs. Antimicrob. Agents Chemother. 38,
2477–2479 (1994). doi: 10.1128/AAC.38.10.2477;
pmid: 7840592

38. M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence,
J. J. Collins, A common mechanism of cellular death induced
by bactericidal antibiotics. Cell 130, 797–810 (2007).
doi: 10.1016/j.cell.2007.06.049; pmid: 17803904

39. J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu,
L. J. V. Piddock, Molecular mechanisms of antibiotic
resistance. Nat. Rev. Microbiol. 13, 42–51 (2015). doi: 10.1038/
nrmicro3380; pmid: 25435309

40. N. Woodford, M. J. Ellington, The emergence of antibiotic
resistance by mutation. Clin. Microbiol. Infect. 13, 5–18
(2007). doi: 10.1111/j.1469-0691.2006.01492.x;
pmid: 17184282

41. M. Zampieri et al., Metabolic constraints on the evolution of
antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).
doi: 10.15252/msb.20167028; pmid: 28265005

42. M. Zampieri, M. Zimmermann, M. Claassen, U. Sauer,
Nontargeted metabolomics reveals the multilevel response to
antibiotic perturbations. Cell Rep. 19, 1214–1228 (2017).
doi: 10.1016/j.celrep.2017.04.002; pmid: 28494870

Lopatkin et al., Science 371, eaba0862 (2021) 19 February 2021 7 of 8

RESEARCH | RESEARCH ARTICLE
on F

ebruary 18, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.ncbi.nlm.nih.gov/pubmed/21822035
http://www.ncbi.nlm.nih.gov/pubmed/22202098
http://dx.doi.org/10.1016/j.mib.2017.09.002
http://dx.doi.org/10.1016/j.mib.2017.09.002
http://www.ncbi.nlm.nih.gov/pubmed/29049930
http://dx.doi.org/10.1016/j.cmet.2019.06.009
http://www.ncbi.nlm.nih.gov/pubmed/31279676
http://dx.doi.org/10.1073/pnas.1401876111
http://www.ncbi.nlm.nih.gov/pubmed/24803433
http://dx.doi.org/10.1016/j.ygeno.2014.09.011
http://www.ncbi.nlm.nih.gov/pubmed/25269377
http://dx.doi.org/10.1371/journal.pone.0033727
http://dx.doi.org/10.1371/journal.pone.0033727
http://www.ncbi.nlm.nih.gov/pubmed/22470465
http://dx.doi.org/10.1093/molbev/msv006
http://www.ncbi.nlm.nih.gov/pubmed/25618457
http://dx.doi.org/10.1038/ng.1034
http://www.ncbi.nlm.nih.gov/pubmed/22179135
http://dx.doi.org/10.1038/ncomms6792
http://www.ncbi.nlm.nih.gov/pubmed/25517437
http://dx.doi.org/10.3389/fmicb.2017.00816
http://dx.doi.org/10.3389/fmicb.2017.00816
http://www.ncbi.nlm.nih.gov/pubmed/28553265
http://dx.doi.org/10.1111/j.1365-294X.2012.05484.x
http://www.ncbi.nlm.nih.gov/pubmed/22332770
http://dx.doi.org/10.1186/1741-7007-11-14
http://dx.doi.org/10.1186/1741-7007-11-14
http://www.ncbi.nlm.nih.gov/pubmed/23433262
http://dx.doi.org/10.1098/rspb.2014.2698
http://dx.doi.org/10.1098/rspb.2014.2698
http://www.ncbi.nlm.nih.gov/pubmed/25716795
http://dx.doi.org/10.1371/journal.pcbi.1000613
http://dx.doi.org/10.1371/journal.pcbi.1000613
http://www.ncbi.nlm.nih.gov/pubmed/20019795
http://www.ncbi.nlm.nih.gov/pubmed/23206143
http://dx.doi.org/10.1093/nar/gks918
http://dx.doi.org/10.1093/nar/gks918
http://www.ncbi.nlm.nih.gov/pubmed/23066108
http://dx.doi.org/10.1128/AAC.44.7.1771-1777.2000
http://www.ncbi.nlm.nih.gov/pubmed/10858329
http://dx.doi.org/10.1038/nature14279
http://www.ncbi.nlm.nih.gov/pubmed/25731169
http://dx.doi.org/10.1126/science.aaj2191
http://www.ncbi.nlm.nih.gov/pubmed/28183996
http://dx.doi.org/10.1186/2042-5783-4-1
http://dx.doi.org/10.1186/2042-5783-4-1
http://www.ncbi.nlm.nih.gov/pubmed/24428920
http://dx.doi.org/10.1371/journal.pgen.1002928
http://www.ncbi.nlm.nih.gov/pubmed/23028345
http://dx.doi.org/10.1073/pnas.91.15.6808
http://www.ncbi.nlm.nih.gov/pubmed/8041701
http://dx.doi.org/10.1093/molbev/msu191
http://www.ncbi.nlm.nih.gov/pubmed/24962091
http://dx.doi.org/10.1111/eva.12196
http://www.ncbi.nlm.nih.gov/pubmed/25861385
http://dx.doi.org/10.1038/nature09354
http://www.ncbi.nlm.nih.gov/pubmed/20811456
http://dx.doi.org/10.1371/journal.pone.0112963
http://dx.doi.org/10.1371/journal.pone.0112963
http://www.ncbi.nlm.nih.gov/pubmed/25409509
http://dx.doi.org/10.1111/j.1574-6976.2011.00289.x
http://www.ncbi.nlm.nih.gov/pubmed/21707669
http://dx.doi.org/10.3389/fmicb.2019.00831
http://dx.doi.org/10.3389/fmicb.2019.00831
http://www.ncbi.nlm.nih.gov/pubmed/31130921
http://dx.doi.org/10.1074/jbc.M203977200
http://www.ncbi.nlm.nih.gov/pubmed/12080063
http://dx.doi.org/10.1046/j.1365-2958.2002.03001.x
http://www.ncbi.nlm.nih.gov/pubmed/12123445
http://dx.doi.org/10.1073/pnas.1906169116
http://www.ncbi.nlm.nih.gov/pubmed/31262806
http://dx.doi.org/10.3791/51456
http://www.ncbi.nlm.nih.gov/pubmed/25077667
http://dx.doi.org/10.1128/AAC.35.2.387
http://www.ncbi.nlm.nih.gov/pubmed/1850972
http://dx.doi.org/10.1128/AAC.34.6.1271
http://www.ncbi.nlm.nih.gov/pubmed/2168148
http://dx.doi.org/10.1128/AAC.38.10.2477
http://www.ncbi.nlm.nih.gov/pubmed/7840592
http://dx.doi.org/10.1016/j.cell.2007.06.049
http://www.ncbi.nlm.nih.gov/pubmed/17803904
http://dx.doi.org/10.1038/nrmicro3380
http://dx.doi.org/10.1038/nrmicro3380
http://www.ncbi.nlm.nih.gov/pubmed/25435309
http://dx.doi.org/10.1111/j.1469-0691.2006.01492.x
http://www.ncbi.nlm.nih.gov/pubmed/17184282
http://dx.doi.org/10.15252/msb.20167028
http://www.ncbi.nlm.nih.gov/pubmed/28265005
http://dx.doi.org/10.1016/j.celrep.2017.04.002
http://www.ncbi.nlm.nih.gov/pubmed/28494870
http://science.sciencemag.org/


43. A. J. Lopatkin et al., Mathematical model code for: Clinically
relevant mutations in core metabolic genes confer antibiotic
resistance (2020); https://doi.org/10.5281/zenodo.4323054.

ACKNOWLEDGMENTS

We thank A. Pironti and B. Walker for help with analysis and helpful
discussions, M. Takahashi for feedback on the manuscript, and
B. Li for helpful discussions. Funding: This work was supported by
the Defense Threat Reduction Agency (HDTRA1-15-1-0051), the
National Institutes of Health (R00GM118907, R01AI146194), the
National Institutes of Health Director’s Early Independence Award
(DP5-OD-024590), the National Science Foundation Graduate
Research Fellowship Program (1122374), the Broad Institute of MIT
and Harvard, and a generous gift from Anita and Josh Bekenstein.
This work has also been funded in part with funds from the
National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services,

under grant no. U19AI110818 to the Broad Institute. Author
contributions: A.J.L. conceived the research, designed and
performed experiments and data analysis, interpreted results, and
wrote the manuscript. S.C.B. assisted in interpreting results,
acquiring data, and editing the manuscript. A.L.M. assisted in
genomic analysis, data interpretation, and manuscript editing.
J.M.S. assisted in data acquisition and interpretation. M.A.K.
assisted in data interpretation and manuscript editing. A.H.B.
assisted in data acquisition and manuscript editing. A.M.E. assisted
in genomic analysis and manuscript editing. N.J.C. assisted in data
acquisition. J.H.Y. assisted in experimental design, data acquisition,
and interpreting the results. J.J.C. conceived the research and
assisted in data interpretation and manuscript editing. Competing
interests: J.J.C. is scientific cofounder and scientific advisory
board chair of EnBiotix, an antibiotic drug discovery company. The
remaining authors declare no conflicting interests. Data and
materials availability: All sequencing data are available on the
Sequence Read Archive repository under BioProject accession

no. PRJNA665848. All other raw data are available in the
supplementary tables (21). Code for the mathematical model is
available at https://github.com/ajlopatkin/metabolic-mutant-
model and is archived on Zenodo (43).

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/371/6531/eaba0862/suppl/DC1
Materials and Methods
Figs. S1 to S11
Tables S1 to S15
References (44–59)
MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

3 November 2019; resubmitted 16 September 2020
Accepted 18 December 2020
10.1126/science.aba0862

Lopatkin et al., Science 371, eaba0862 (2021) 19 February 2021 8 of 8

RESEARCH | RESEARCH ARTICLE
on F

ebruary 18, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

https://github.com/ajlopatkin/metabolic-mutant-model
https://github.com/ajlopatkin/metabolic-mutant-model
https://science.sciencemag.org/content/371/6531/eaba0862/suppl/DC1
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/science.aba0862
http://science.sciencemag.org/


Clinically relevant mutations in core metabolic genes confer antibiotic resistance

M. Earl, Nicole J. Cheney, Jason H. Yang and James J. Collins
Allison J. Lopatkin, Sarah C. Bening, Abigail L. Manson, Jonathan M. Stokes, Michael A. Kohanski, Ahmed H. Badran, Ashlee

DOI: 10.1126/science.aba0862
 (6531), eaba0862.371Science 

, this issue p. eaba0862; see also p. 783Science
microbes can evolve resistance.
and revealed novel resistance mutations in core metabolic genes, expanding the known means by which pathogenic
antibiotic resistance (see the Perspective by Zampieri). These mutations targeted central carbon and energy metabolism 

 found that mutations that affect microbial metabolism can result inet al.resistance at different temperatures, Lopatkin 
intracellular target or enzymes that can disable the antibacterial compound within the cell. Screening for the evolution of
well understood, and most of the mutations that have been identified to confer resistance do so by modification of the 

Antibiotic resistance arising from mutation is common among pathogenic bacteria. However, this process is not
The many roads to resistance

ARTICLE TOOLS http://science.sciencemag.org/content/371/6531/eaba0862

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2021/02/17/371.6531.eaba0862.DC1

CONTENT
RELATED 

http://stm.sciencemag.org/content/scitransmed/12/568/eaay5067.full
http://stm.sciencemag.org/content/scitransmed/12/570/eabb3791.full
http://stm.sciencemag.org/content/scitransmed/13/575/eaba3571.full
http://stm.sciencemag.org/content/scitransmed/13/576/eaba0501.full
http://science.sciencemag.org/content/sci/371/6531/783.full

REFERENCES

http://science.sciencemag.org/content/371/6531/eaba0862#BIBL
This article cites 59 articles, 14 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on F
ebruary 18, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/content/371/6531/eaba0862
http://science.sciencemag.org/content/suppl/2021/02/17/371.6531.eaba0862.DC1
http://science.sciencemag.org/content/sci/371/6531/783.full
http://stm.sciencemag.org/content/scitransmed/13/576/eaba0501.full
http://stm.sciencemag.org/content/scitransmed/13/575/eaba3571.full
http://stm.sciencemag.org/content/scitransmed/12/570/eabb3791.full
http://stm.sciencemag.org/content/scitransmed/12/568/eaay5067.full
http://science.sciencemag.org/content/371/6531/eaba0862#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

