In the format provided by the authors and unedited.

Continuous directed evolution of proteins with improved soluble expression

Tina Wang^{1,2}, Ahmed H. Badran^{1,2}, Tony P. Huang^{1,2} and David R. Liu^{1,2,3*}

¹Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. ²Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. ³Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA. *e-mail: drliu@fas.harvard.edu

scFv	T _m (°C)	Yield (mg)	EC ₅₀ (nM) ^a
Ωg	59.3	0.02 ± 0.013 ^b	4.4
29.1.2	57.1	0.11 ± 0.033 ^b	26.3
29.1.5	57.0	0.10 ± 0.019 ^b	4.4
m3	63.5	0.09 ± 0.012 ^b	4.7
Ωg L224V	n.d.	0.05 ^b	n.d.
Ωg G103S	n.d.	0.03 ^b	n.d.
Ωg F87S	n.d.	0.06 ^b	n.d.
m3-noCys ^c	52.4	0.06 ^d	10.7
58.1.1 °	57.5	n.d.	87.7
58.1.2 ^c	57.5	n.d.	67.8
58.2.8 ^c	51.8	0.06 ^d	n.d.
29.1.5-noCys ^c	40.8	0.06 ^d	n.d.
58.3.1 ^c	51.3	0.18 ^d	88.6
58.4.2 ^c	44.8	0.12 ^d	15.7
58.4.4 ^c	47.4	0.22 ^d	81.2

Supplementary Table 1. Properties of purified anti-GCN4 scFv variants.

^a Measured by ELISA using MBP–TEV–GCN4 7P14P as the antigen.

^b Yield isolated from 220 mL overnight culture in LB at 16 °C, given as the mean ± standard deviation of three biological replicates (purifications performed on three different days using starter cultures from three different colonies)

^c Disulfide-free scFvs.

^d Yield isolated from 250 mL overnight culture in 2xYT at 16 °C

scFv	T _m (°C)	Yield (mg) ^a	EC ₅₀ (nM) ^b
C4	59.0	0.1	34
C4 V38F	51.5	0.3	n.d.
C4 A98V	55.0	0.4	n.d.
34.1.2	n.d.	n.d.	67
34.2.3	55.0	0.6	26
34.2.6	56.0	0.5	155

Supplementary Table 2. Properties of purified anti-htt scFv variants.

^a Yield isolated from 250 mL culture in 2xYT at 37 °C. ^b Measured by ELISA using biotinylated htt exon 1 peptide as the antigen.

T _m (°C)	Yield (mg) ^a
61.5	1.2
58.3	0.9
59.0	1.2
57.5	0.9
60.1	1.1
	T _m (°C) 61.5 58.3 59.0 57.5 60.1

Supplementary Table 3. Properties of purified MBP variants.

^a Yield isolated from 250 mL culture in 2xYT at 20 °C.

protein	Yield	(mg) ^a
	Replicate 1	Replicate 2
BE3 (wt)	0.25	0.21
36.1-BE3	0.45	0.33
43.1-BE3	0.71	0.54
43.2-rev-BE3	0.56	0.39

Supplementary Table 4. Yields of purified BE3 variants.

^a Yield isolated from 200 mL culture in 2xYT at 16 °C. Replicates denote purifications performed on two separate days using starter cultures from two different colonies.

			ORF1		ORF2		ORF3	
Name	Class (res)	Origin	Prom	[RBS] ¹ Genes	Prom	[RBS] Genes	Prom	[RBS] Genes
pTW006a	AP (carb ^R)	SC101	P _{T7}	[SD8] luxAB	PBAD	[SD8] T7c	Pc	araC
pTW006a2	AP (carb ^R)	SC101	P _{T7}	[SD8] luxAB	P_{BAD}	[SD8] T7c R632S	Pc	araC
pTW006a3	AP (carb ^R)	SC101	P _{T7}	[SD8] luxAB	P_{BAD}	[SD8] T7c L637A	Pc	araC
pTW006a4	AP (carb ^R)	SC101	P _{T7}	[SD8] luxAB	P_{BAD}	[SD8] T7c Y639F	Pc	araC
pTW006a5	AP (carb ^R)	SC101	P _{T7}	[SD8] luxAB	P_{BAD}	[SD8] T7c Q649S	Pc	araC
pTW006a6	AP (carb ^R)	SC101	P _{T7}	[SD8] luxAB	PBAD	[SD8] T7c F644A	Pc	araC
pTW006aP1a	AP (carb ^R)	SC101	P _{T7}	[SD8] gIII, luxAB	P _{pro1}	[SD8] T7c		
pJC175e ²	AP (carb ^R)	SC101	P_{psp}	[SD8] gIII, luxAB				
pTW026a3c	AP (carb ^R)	SC101	P_{psp}	[SD8] gIII-N				
pTW048a3	AP (carb ^R)	SC101	P _{lacZ-opt} (OR1+2)	[sd5] gIII-N	$P_{pro1}{}^3$	434cl–SH2 _{ABL1}		
pTW055a3	AP (carb ^R)	SC101	P _{lacZ-opt} (OR1+2)	[sd8] gIII-N	P _{pro1}	434cl–GCN4 7P14P		
pTW074c	AP (carb ^R)	SC101	P _{lacZ-opt} (OR1)	[sd5] gIII-N	P _{pro1}	434cl-htt 1-17		
pTW084b	AP (carb ^R)	SC101	P _{lacZ-opt} (OR1+2)	[sd5] gIII-N	P _{pro1}	434cl–m3		
pTW032b2c	AP (spec ^R)	CoIE1	P_{psp}	[sd5] gIII-C				
pTW051a	AP (spec ^R)	CoIE1	P _{T7}	[sd5] gIII-C	P _{pro1}	T7c		
pTW051b2	AP (spec ^R)	CoIE1	P _{T7a}	[sd5] gIII-C	P _{pro1}	T7c R632S		
pTW051b4	AP (spec ^R)	CoIE1	P _{T7d}	[sd5] gIII-C	P _{pro1}	T7c R632S		
pTW051d	AP (spec ^R)	CoIE1	P _{T7a}	[sd5] gIII-C	P _{pro1}	T7c R632S+Q649S		
pTW051d2	AP (spec ^R)	CoIE1	P _{T7d}	[sd5] gIII-C	P _{pro1}	T7c R632S+Q649S		
pTW004a	CP (spec ^R)	CoIE1	P _{tet}	[SD8] MBP-T7n				
pTW004b	CP (spec ^R)	CoIE1	P _{tet}	[SD8] MBP G32D+I33P-T7n				
pTW004d	CP (spec ^R)	CoIE1	P _{tet}	[SD8] MBP V8G– T7n				
pTW004e	CP (spec ^R)	CoIE1	P _{tet}	[SD8] MBP G19C–T7n				
pTW004f	CP (spec ^R)	CoIE1	P _{tet}	[SD8] MBP A276G–T7n				
pTW004g	CP (spec ^R)	CoIE1	P _{tet}	[SD8] MBP Y283D–T7n				

Supplementary Table 5. Plasmids used in this work.

pTW004h	CP (spec ^R)	ColE1	P _{tet}	[SD8] MBP T345I–T7n		
pTW035d	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP G32D+I33P		
pTW035e	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP		
pTW035g	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP V8G		
pTW035h	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP G19C		
pTW035i	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP A276G		
pTW035j	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP Y283D		
pTW035b	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP P33T+T275l		
pTW035c	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP P33T+V76I+ A167V+V373I		
pTW035aa	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP D33T+F258Y		
pTW035ab	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP D33L		
pTW035ac	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP G24V+D33S		
pTW069a	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–Ωg		
pTW069h	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–m3		
pTW075l	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-29.1.2		
pTW075k	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-29.1.5		
pTW087a	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–MBP– TEV–GCN4 7P14P		
pTW081a	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–C4		
pTW081d	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-C4 V38F		
pTW081e	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–C4 A98V		
pTW081i	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-34.1.2		
pTW081j	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-34.2.3		
pTW081k	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-34.2.6		
pTW101a	EP (spec ^R)	CoIE1	rhaP _{BAD}	6xHis– rAPOBEC1	rhaP _{RS}	rhaS, rhaR
pTW101h	EP (spec ^R)	CoIE1	$rhaP_{BAD}$	6xHis-36.1	rhaP _{RS}	rhaS, rhaR
pTW101t	EP (spec ^R)	CoIE1	rhaP _{BAD}	6xHis-43.1	rhaP _{RS}	rhaS, rhaR
pTW101m	EP (spec ^R)	CoIE1	rhaP _{BAD}	6xHis-43.2	$rhaP_{RS}$	rhaS, rhaR

pTW101m2	EP (spec ^R)	CoIE1	rhaP _{BAD}	6xHis-43.2-rev	rhaP _{RS}	rhaS, rhaR		
pHR41 ⁴	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–BE3				
pTW142a	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-36.1-BE3				
pTW142b	EP (kan ^R)	pBR322	P _{T7lac}	6xHis-43.1-BE3				
pTW142c	EP (kan ^R)	pBR322	P _{T7lac}	6xHis–43.2-rev- BE3				
pNMG98⁵	EP (carb ^R)	SC101	P _{lac}	gRNA	PBAD	BE2	Pc	araC
pTW143a	EP (carb ^R)	SC101	P _{lac}	gRNA	PBAD	36.1-BE2	Pc	araC
pTW143b	EP (carb ^R)	SC101	Plac	gRNA	PBAD	43.1-BE2	Pc	araC
pTW143c	EP (carb ^R)	SC101	P _{lac}	gRNA	P_{BAD}	43.2-rev-BE2	Pc	araC
pTW143d	EP (carb ^R)	SC101	P _{lac}	gRNA	P_{BAD}	43.2-BE2	Pc	araC
antibiotic selection uracil⁵	spec ^R	RSF1030	P_{kan}	kan ^R	P _{cat}	cam ^R H193R		
pACK129 ⁶	carb ^R	pBR322	Рсми	BE3				
pTW107a	carb ^R	pBR322	PCMV	36.1 BE3				
pTW107b	carb ^R	pBR322	P_{CMV}	43.1 BE3				
pTW107c	carb ^R	pBR322	PCMV	43.2-rev BE3				
MP6 ⁷	MP (chlor ^R)	cloDF13	P_{BAD}	dnaQ926, dam, seqA, emrR, ugi, cda1	Pc	araC		
DP6 ⁷	MP (chlor ^R)	cloDF13	P _{BAD}	dnaQ926, dam, seqA, emrR, ugi, cda1	Pc	araC	$P_{psp-tet}$	[sd8] gIII
SP01a	SP (none)	M13 f1	P _{gIII}	MBP–T7n				
SP01z	SP (none)	M13 f1	P _{gIII}	T7n				
SP02a	SP (none)	M13 f1	P _{gIII}	MBP G32D+ I33P–T7n				
SP02b	SP (none)	M13 f1	P _{gIII}	MBP Y283D-T7n				
SP09b3	SP (none)	M13 f1	P _{gIII}	HA4–T7n–rpoZ				
SP10b2	SP (none)	M13 f1	P _{gIII}	HA4 Y87A–T7n– rpoZ				
SP16c3	SP (none)	M13 f1	P _{gIII}	Ωg–eT7n–rpoZ				
SP24a3	SP (none)	M13 f1	P _{gIII}	C4–eT7n–rpoZ				
SP27b	SP (none)	M13 f1	P _{gIII}	GCN4 7P14P– MBP G32D+ I33P–eT7n–rpoZ				
SP30	SP (none)	M13 f1	P _{gIII}	GCN4 7P14P – rAPOBEC1– eT7n–rpoZ				

SP39b	SP (none)	M13 f1	P _{gIII}	m3-noCys– eT7n–rpoZ
SP39d	SP (none)	M13 f1	P _{gIII}	29.1.5-noCys– eT7n–rpoZ
SP13	SP (none)	M13 f1	P _{gIII}	kan
SP98 ⁸	SP (none)	M13 f1	P _{gIII}	rpoZ–HA4

Supplementary Table 6. General reagents and equipment.

Chemicals and media		
Name	Source	Notes
Carbenicillin	Gold Biotechnology	
Spectinomycin	Gold Biotechnology	
Chloramphenicol	Gold Biotechnology	
Kanamvcin	Sigma-Aldrich	
Tetracycline	Gold Biotechnology	
Streptomycin	Gold Biotechnology	
Rifampin	Alfa Aesar	
Isopropyl-β-D-thiogalactoside (IPTG)	Gold Biotechnology	
Anhydrotetracycline (aTc)	Fluka	
L-arabinose	Gold Biotechnology	
Rhamnose	Gold Biotechnology	
PEG 3350	Sigma-Aldrich	
Bluo-gal	Gold Biotechnology	
Dithiothreitol (DTT)	Sigma-Aldrich	
MATLEKLMKAFESLKSFK(Biotin)-NH ₂	New England Peptide	Custom peptide synthesis
2xYT media	United States Biologicals	
LB media	United States Biologicals	
SOC media	New England BioLabs	
DRM	Reference 3	
Agar	United States Biologicals	
DMEM	Thermo Fisher Scientific	Supplemented with high
		glucose and GlutaMAX
Opti-MEM	Thermo Fisher Scientific	
Fetal Bovine Serum	Thermo Fisher Scientific	
Reagents and Supplies	1	1
Name	Source	Notes
MinElute PCR Purification Kit	Qiagen	
HyClone water	GE Healthcare Life Sciences	
B-per lysis reagent	Thermo Fisher Scientific	
Protease inhibitor cocktail	Roche	
Laemmli sample loading buffer (4X)	Bio-Rad	
Precision Plus Protein Dual Color	Bio-Rad	
Standard		
Bolt MES SDS running buffer	I hermo Fisher Scientific	
InstantBlue Ultrafast protein stain	Expedeon	
Bolt 4-12% BIS-Tris Plus pre-cast gel	I nermo Fisner Scientific	
Arrian Little 45 contrifuent filter with		
Amicon Ultra-15 centrifugal filter unit		
Quick Start Bradford reagent	BIO-Rad	
Odyssey blocking buffer in PBS	LI-COR	
	I nermo Fisner Scientific	
Protein Thermal Shill Dye Kit	Life Technologies	
I Stop Liltro TMD ELISA Substrate	Thermo Fisher Scientific	
DVDE Litrofroe contrifuced filter		
96-well black walled clear bettom plate	Costar	
MaxiSorp 96-well plate	Nunc	
Lipofectamine 2000	Thermo Fisher Scientific	
Lipoleolamine 2000		

Antibodies and ELISA proteins		
Name	Source	Notes
Anti-6xHis	Abcam	Mouse monoclonal
		ab18184
Anti-GroEL	Sigma-Aldrich	Rabbit polyclonal G6532
Bovine Serum Albumin (BSA)	Sigma-Aldrich	
Anti-MBP, HRP-conjugated	Abcam	Mouse monoclonal ab49923
Streptavidin, HRP-conjugated	BioLegend	
Anti-mouse 680RD	LI-COR	Goat polyclonal 926-68070
Anti-rabbit 800CW	LI-COR	Donkey polyclonal 926- 32213
Enzymes		
Name	Source	Notes
Phusion U Hot Start DNA polymerase	Thermo Fisher Scientific	
USER enzyme	New England BioLabs	
Dpnl	New England BioLabs	
BsaWI	New England BioLabs	
Illustra Templiphi 100 Amplification Kit	GE Healthcare Life Sciences	
Cells		
Name	Source	Notes
Mach1	Thermo Fisher Scientific	
Turbo	New England BioLabs	
BL21 DE3	New England BioLabs	
S2060	Reference 4	
HEK293T	ATCC	
Equipment		
Name	Source	Notes
MilliQ water purification system	Millipore	
G:Box Chemi XRQ	Syngene	
iBlot 2 Gel Transfer Device	Life Technologies	
Odyssey Imaging System	LI-COR	
CFX96 Real-Time PCR Detection	Bio-Rad	
System		
Infinite M1000 Pro microplate reader	Tecan	

Supplementary Figure 1. Overview of the luciferase-based transcriptional activity reporter.

Supplementary Figure 2. Validation of the soluble protein expression PACE selection.
(a) SDS-PAGE analysis of soluble and insoluble protein extracts of MBP variants expressed in *E. coli* at 37 °C. (b) SP encoding the poorly expressed MBP(G32D+I33P) mutant are outcompeted during PACE by SP encoding wild-type MBP, as shown by restriction digestion of PCR products with BsaWI, which cleaves wild-type MBP but not MBP(G32D+I33P). The starting ratio of MBP(G32D+I33P) SP to wild-type MBP SP was 1000:1. (c) Full-size image of the gel in panel (a). (d) Full-size image of the gel in panel (b). All experiments in this figure were repeated at least once with similar results.

Supplementary Figure 3. SE-PACE of MBP Y283D (**a**) and G32D+I33P (**b**). SP isolated from PACE with MBP Y293D at 72 h show complete reversion to Tyr at position 293. The P33T acquired during MBP(G32D+I33P) SE-PACE confers modest improvements in soluble expression in BL21 DE3 cells at 37 °C. This experiment was repeated once with similar results.

Supplementary Figure 4. Increasing protein soluble expression selection stringency. (a) Left: transcriptional activity of split T7 RNAPs harboring inactivating mutations in T7c. Right: Mutations in T7c do not affect the ability of the selection to differentiate between MBP and the MBP(G32D+I33P) folding mutant. Data reflect two technical replicates (unique clones). (b) Formation of premature stop codons allows translational re-initiation at adjacent start codons to produce T7n in a manner uncoupled from POI expression.

construct name	insertion pos.	signal peptide sequence	plaque strength
S2208 (pJC175e)	wt	MKKLLFAIPLVVPFYSHS (wt)	+++++
pTW026a1	L_5	MKKLL <u>CFN</u> IPLVVPFYSHS	-
pTW026a2	l ₈	MKKLLFAI <mark>CEN</mark> PLVVPFYSHS	++++
pTW026a3	L ₁₀	MKKLLFAIPL <u>CFN</u> VVPFYSHS	+++++
pTW026a4	V ₁₁	MKKLLFAIPLV <u>CFN</u> VPFYSHS	-
pTW026a5	V ₁₂	MKKLLFAIPLVV <mark>CFN</mark> PFYSHS	-

Supplementary Figure 5. Determination of a split intein insertion site in the signal peptide of pIII. SP containing kan^r in place of gIII were allowed to form plaques on host cells transformed with APs encoding a CFN motif inserted at various positions in the pIII signal peptide sequence. This experiment was repeated once with similar results.

Supplementary Figure 6. Split-intein pIII allows dual positive selections during PACE. (a) Plaque activity of SP encoding mutant HA4(Y87A) monobodies that cannot bind the target SH2 domain on host cells transformed with various split-intein pIII APs. These SP pass the protein expression selection but not the protein binding selection, and therefore do not propagate on cells that contain a SH2 binding AP. This experiment was repeated once with similar results. (b) SE-PACE of HA4 Y87A enriches for SP encoding Met at position 87. (c) Apparent binding activity of evolved HA4 variants to the SH2 domain measured by transcriptional activation by the protein binding PACE selection. Data reflect the mean and s.d. of three technical replicates (unique clones).

Supplementary Figure 7. Evolution of eT7n. (**a**) T7n was evolved in PACE with increasingly stringent soluble expression APs to yield eT7n. (**b**) Positions mutated in eT7n are shown in green spheres on the structure of T7 RNA polymerase. The region split into T7n is shown in blue. T7c is shown in gray.

а

Supplementary Figure 8. SE-PACE of anti-GCN4 scFv Ω g. (a) SP isolated from lagoon 1 of PACE with anti-GCN4 scFv Ω g at 72 h. (b) Soluble expression of Ω g variants in BL21 DE3 cells at 37 °C. This experiment was repeated at least once with similar results. (c) SP isolated from lagoon 2 of PACE with anti-GCN4 scFv Ω g at 72 h. (d) Evolution of an alternate translation initiation site in lagoon 2.

Supplementary Figure 9. Expression, purification, and melting temperature determination of anti-GCN4 scFv Ω g variants. (a) Expression of anti-GCN4 scFv Ω g variants in BL21 DE3 cells at 37 °C shown in crude lysates separated by SDS-PAGE. (b) Western blot of his-tagged variants in BL21 DE3 cells at 37 °C. GroEL is used as a loading control. (c) Relative expression levels of anti-GCN4 scFv variants as determined by densitometry of western blotting as shown in (b). Data reflect the mean and s.d. of three biological replicates (experiments conducted on different days). (d) SDS-PAGE of purified anti-GCN4 scFv Ω g variants and MBP-TEV-GCN4 expressed in BL21 DE3 cells at 16 °C. (e) Melting temperature curves of purified anti-GCN4 scFv Ω g variants. Data reflect the mean and s.d. of four technical replicates (four melt curve samples using protein from the same preparation). (f) Western blot and (g) densitometry of his-tagged variants bearing single point mutations from 29.1.5. Data reflect two biological replicates (experiments conducted on different days). All experiments in this figure were repeated at least once with similar results.

Supplementary Figure 10. Purification and melting temperature determination of disulfide-free anti-GCN4 scFv variants. (**a**, **b**) SP isolated from PACE with disulfide-free anti-GCN4 scFv variants m3 and 29.1.5 (denoted m3-noCys and 29.1.5-noCys, respectively). (**c**) SDS-PAGE of purified disulfide-free scFvs expressed in BL21 DE3 cells at 16 °C. This purification was performed a single time. (**d**) Melting temperature curves of purified variants. Data reflect the mean and s.d. of four technical replicates (four melt curve samples using protein from the same preparation). This experiment was repeated once with similar results.

	2	٠	
2		1	

	C4 residue number											eT7n residue number							
	1	2	6	30	38	98	126	144	163	223	3	55	97	131	135	159			
wt	А	Q	Q	F	V	А	S	S	Y	S	Ι	Е	к	Т	А	к			
30.1.2	V	Q	Q	F	F	А	S	S	Υ	S	М	Е	к	т	А	к			
30.1.3	А	Q	Q	F	V	т	S	S	Y	S	Ι	Е	к	т	А	к			
30.1.4	т	Q	К	F	V	Α	S	L	Y	S	I	Е	к	т	А	К			
30.2.1	А	Q	Q	L	F	Α	S	S	Y	S	I	Е	R	т	А	К			
30.2.2	А	Q	Q	F	V	V	S	S	Y	А	Ι	Е	R	т	А	К			
30.2.3	А	Q	Q	F	V	V	Р	S	Y	S	I	Е	R	т	А	К			
30.2.4	А	Q	Q	F	F	А	S	S	Υ	S	Ι	Е	R	т	A	к			
30.4.4	А	К	Q	F	V	V	S	S	Υ	S	Ι	Е	к	Т	Т	Е			
30.4.5	А	К	Q	F	V	V	S	S	Υ	S	Ι	D	к	I.	А	к			
30.4.6	Т	Q	Q	F	F	А	S	S	С	S	Ι	Е	к	Т	А	К			

b

	C4 residue number												eT7n residue number							
	1	2	15	24	29	38	51	98	108	123	136	160	163	166	48	64	82	97	131	163
wt	А	Q	Ρ	А	т	v	v	А	R	G	т	I	Y	v	А	А	А	к	т	к
34.1.1	Т	Q	Ρ	А	т	F	۷	А	R	G	т	I	Υ	v	A	V	А	К	Т	к
34.1.2	A	К	Ρ	А	Ρ	۷	۷	V	R	G	I	I	Υ	v	Α	А	А	R	т	т
34.1.3	A	К	Ρ	А	Ρ	۷	۷	V	R	G	I	I	Y	v	Α	А	А	R	т	т
34.1.4	A	К	Ρ	А	Т	۷	А	A	L	G	Т	V	Y	v	Α	А	А	R	Т	к
34.1.5	Т	Q	Ρ	А	т	F	۷	Α	R	G	т	I	Y	v	Α	V	А	К	1	к
34.1.6	Т	Q	Ρ	А	т	F	۷	Α	R	G	т	I	Y	v	Α	V	А	К	Т	к
34.1.7	т	Q	Р	А	т	F	۷	A	R	G	т	I	Y	v	A	А	A	к	Т	к
34.1.8	А	К	Р	А	Р	۷	۷	V	R	G	1	I	Y	v	A	А	A	R	т	т
34.2.1	А	Q	Ρ	А	Т	۷	۷	V	R	G	Т	I	Y	v	S	А	A	К	Т	к
34.2.2	А	Q	Р	А	т	V	۷	V	R	G	т	I	С	1	Α	А	S	к	V	к
34.2.3	А	К	Ρ	т	Т	۷	۷	V	R	G	Т	I	Y	v	A	А	А	К	Т	к
34.2.4	А	Q	Ρ	А	т	v	۷	V	R	R	т	I	С	1	А	А	А	к	V	к
34.2.5	А	К	Р	т	т	v	۷	V	R	G	т	I	Υ	v	А	А	А	к	Т	к
34.2.6	А	Q	Ρ	А	Т	۷	۷	V	R	G	Т	I	С	1	A	А	А	К	Т	к
34.2.7	А	Q	Ρ	А	т	۷	۷	V	R	G	т	I	С	1	A	А	А	К	I	к
34.2.8		Q	L	А	т	F	v	А	R	W	т	I	Y	V	А	А	А	к	1	к

Supplementary Figure 11. Evolution of anti-htt scFv C4. SP isolated from PACE with a moderately stringent (**a**) and (**b**) highly stringent AP for protein expression.

-600-

40

60

temp (°C)

- 34.2.6

80

0-

40

60

temp (°C)

80

Supplementary Figure 12. Expression, purification, and melting temperature determination of anti-Htt scFv C4 variants. (**a**) Expression of anti-Htt scFv C4 variants in BL21 DE3 cells at 37 °C shown in crude lysates separated by SDS-PAGE. (**b**) SDS-PAGE of purified anti-htt scFv C4 variant fractions expressed in BL21 DE3 cells at 16 °C. (**c**) Melting temperature curves and first derivatives (**d**) for anti-htt scFv C4 variants. Data reflect the mean and s.d. of four technical replicates (four melt curve samples using protein from the same preparation). All experiments in this figure were repeated at least once with similar results.

Supplementary Figure 13. Contribution of protein binding selection to improvement of protein activity. (a) Parallel PACE experiments with MBP G32D+I33T, where binding to anti-MBP monobody YSX1 was selected in the presence or absence of a simultaneous selection for protein expression. (b) Mutations from PACEs P26 and P28, as depicted as blue and red spheres, respectively, map to the YSX1-MBP binding interface. (c) Expression of evolved variants in BL21 DE3 cells at 37 °C. This experiment was repeated once with similar results.

Supplementary Figure 14. Schematic of cheat-resistant activity-independent selection for protein expression. (a) The protein of interest (POI) is fused between an affinity tag (in this case, the GCN4 peptide) and T7n–rpoZ, allowing both the protein expression and protein binding selections to operate. As the SP carry the GCN4 peptide linked to rpoZ, they begin PACE with the ability to pass the protein binding selection. (b) Any SP that cheat by forming truncations in the POI lose the ability to propagate on the protein binding selection, as the GCN4 peptide is no longer connected to rpoZ. Therefore, these phage are expected to wash out of the lagoon.

а

Supplementary Figure 15. Expression, purification, and melting temperature determination of MBP variants. (a) Expression of MBP variants in in BL21 DE3 cells at 37 °C shown in crude lysates separated by SDS-PAGE. This expression was performed once. (b) SDS-PAGE of purified MBP variants expressed in BL21 DE3 cells at 20 °C. This purification was performed once. (c) Melting temperature curves of purified MBP variants. Data reflect the mean and s.d. of four technical replicates (four melt curve samples using protein from the same preparation).

Supplementary Figure 16. Activity-independent protein expression PACE of rAPBOEC1. (a) Expression in BL21 DE3 cells at 37 °C of rAPOBEC1 variants (6xHis) or GroEL (load control). This experiment was repeated once with similar results. (b) Consensus mutations from SP isolated from lagoons 1 and 2 of first two PACE experiments. (c) Mutations in rAPOBEC1 after 370 h of PACE.

Supplementary Figure 17. Activity of rAPOBEC1 variants in BL21 cells. (a) rAPOBEC1 variants from PACE retain deaminase activity in *E coli*, as measured by cells surviving selection on rifampin. (b)Total cfu from overnight cultures of BL21 cells after induction of rAPOBEC1 variants. All data in this figure reflect the mean and s.e.m. of six technical replicates (unique clones).

Supplementary Figure 18. SDS-PAGE of purified BE3 variants expressed in BL21 DE3 cells at 16 °C. BE3 variants were isolated after affinity purification using cobalt resin, then buffer-exchanged and concentrated using spin filtration. This purification was repeated once with similar results.

Supplementary Figure 19. Product purity and indel formation resulting from base editing with evolved rAPOBEC1 variants at six genomic loci in HEK293T cells. (**a**) Product distribution of BE3 mediated cytidine editing in HEK293T cells using wild-type rAPOBEC1 and evolved variants at six genomic loci, measured by the percentage of sequencing reads where the target C is converted to A, G, or T. The target C at each site (*EMX-RNF2*) is bolded in the sequences of the six genomic sites shown above the graph. (**b**) Indel formation resulting from editing with BE3 variants in HEK293T cells at the same sites shown in (**a**). All bars in this figure depict the mean and error bars s.e.m. of four biological replicates (experiments performed on different days).

а

Supplementary Note 1. DNA sequences.

a. MBP. Codons in blue (Gly 32 and Ile 33) were mutated to GAT and CCG in MBP(G32D+I33P). The codon highlighted in red (Tyr 293) was mutated to GAC in Y283D.

AAGATCGAAGAAGGTAAGTTAGTGATTTGGATCAACGGCGATAAAGGCTATAACGG TTTAGCGGAAGTAGGCAAGAAGTTTGAGAAGGATACCGGAATCAAAGTGACGGTC GAACACCCGGATAAGTTAGAGGAGAAGTTCCCTCAAGTAGCGGCAACGGGCGAC GTTTATTAGCGGAGATTACTCCAGACAAGCGTTCCAGGACAAGTTATATCCATTTA CGTGGGACGCAGTGCGTTATAACGGCAAGTTAATCGCATATCCCATTGCGGTAGA AGCCCTGAGCCTGATTTACAACAAGGACCTGTTACCCAACCCTCCGAAGACGTGG GAGGAGATTCCGGCTTTAGATAAGGAACTGAAAGCGAAAGGCAAGTCTGCCCTGA TGTTTAACCTGCAAGAACCCTACTTCACCTGGCCTCTGATCGCGGCGGATGGCGG TTATGCGTTTAAGTACGAAAACGGCAAATACGATATTAAGGATGTAGGCGTCGATA ACGCCGGTGCCAAAGCCGGTCTGACCTTTTTAGTTGATCTGATTAAGAATAAGCAC ATGAACGCAGACACCGACTACAGCATTGCGGAAGCTGCGTTTAATAAAGGTGAGA CCGCCATGACGATTAACGGACCTTGGGCGTGGTCGAACATTGATACCAGTAAAGT CAATTACGGCGTTACAGTCCTGCCGACCTTCAAAGGTCAGCCGTCAAAACCGTTC GTAGGTGTCTTATCCGCCGGTATCAACGCGGCGTCCCCAAATAAGAGTTGGCTA AAGAGTTCCTGGAAAACTATCTGCTGACAGACGAAGGACTGGAGGCTGTGAACAA GGACAAGCCACTGGGCGCTGTTGCGCTGAAAAGTTATGAGGAAGAACTGGCGAAA GATCCCCGCATCGCGGCGACGATGGAAAACGCCCAAAAAGGCGAAATCATGCCG AACATTCCGCAGATGTCAGCTTTTTGGTATGCCGTACGCACGGCTGTTATTAACGC CGCGTCGGGCCGCCAAACCGTTGATGAGGCACTGAAGGACGCGCAGACTCGTAT CACCAAG

b. gIII-N. NpuN is shown in blue.

ATGAAAAATTATTATTCGCAATTCCTTTATGTCTCAGCTACGAAACCGAAATCTTG ACCGTCGAATATGGTCTGCTGCCAATCGGCAAGATTGTTGAAAAACGTATTGAATG TACGGTCTACTCAGTGGATAACAACGGCAATATCTACACCCAGCCGGTGGCCCAG TGGCATGACCGTGGTGAACAGGAAGTGTTCGAATATTGTCTGGAAGACGGATCTTT AATCCGTGCCACAAAGGATCACAAATTTATGACTGTAGATGGTCAGATGCTCCCAA TCGACGAAATTTTTGAACGCGAATTAGACCTGATGCGCGTGGATAATCTCCCGAAT TAA

c. glll-C. NpuC is highlighted in blue. The +1, +2, and +3 exteins are highlighted in red.

ATGATCAAAATTGCCACGCGTAAATATTTAGGCAAACAGAATGTTTATGATATCGGT GTCGAGCGCGATCATAATTTCGCGCTGAAAAACGGCTTTATCGCCAGCAATTGTTT TAATGTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAAA CCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGT TACGCTAACTATGAGGGCTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGG TGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAA ATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTG GCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATC AACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAA TCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTT CCGAAATAGGCAGGGGGCATTAACTGTTTATACGGGCACTGTTACTCAAGGCACT GACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAAAGCCATGTATGAC GCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATGAGGA TCCATTCGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCA ATGCTGGCGGCGGCTCTGGTGGTGGTGGTGGCGGCTCTGAGGGTGGTGGCT GGCTCTGGTTCCGGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGGC TATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTG ATTCTGTCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCC GGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAAT GGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTT ACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCGCTGGTAAAC CTTACGAGTTCAGTATCGACTGCGATAAGATCAACCTGTTCCGCGGTGTCTTTGCG TTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACATACTGC GTAATAAGGAGTCTTAA

d. T7n.

AACACGATTAACATCGCTAAGAACGACTTCTCTGACATCGAACTGGCTGCTATCCC GTTCAACACTCTGGCTGACCATTACGGTGAGCGTTTAGCTCGCGAACAGTTGGCC CTTGAGCATGAGTCTTACGAGATGGGTGAAGCACGCTTCCGCAAGATGTTTGAGC GTCAACTTAAAGCTGGTGAGGTTGCGGATAACGCTGCCGCCAAGCCTCTCATCAC TACCCTACTCCCTAAGATGATTGCACGCATCAACGACTGGTTTGAGGAAGTGAAAG CTAAGCGCGGCAAGCGCCCGACAGCCTTCCAGTTCCTGCAAGAAATCAAGCCGGA AGCCGTAGCGTACATCACCATTAAGACCACTCTGGCTTGCCTAACCAGTGCTGACA ATACAACCGTTCAGGCTGTAGCAAGCGCAATCGGTCGGGCCATTGAGGACGAGGC TCGCTTCGGTCGTATCCGTGACCTTGAAGCTAAGCACTTCAAGAAAACGTTGAGG AACAACTCAACAAGCGCGTAGGGCACGTCTACAAG

e. eT7n. Nucleotides in blue represent mutations from T7n (see also **Supplementary Fig. 6a**).

f. GCN4 7P14P peptide.

TTGCAAAGAATGAAACAACTTGAACCGAAGGTTGAAGAATTGCTTCCGAAAAATTAT CACTTGGAAAATGAGGTTGCCAGATTAAAGAAATTAGTTGGCGAACGC

g. scFv Ωg. Codons in blue (Phe 91 and Ile 188) were mutated to TAT and ACC in m3.

h. 29.1.2. Nucleotides in blue represent mutations from scFv Ωg (see also **Supplementary Fig. 7a**).

i. 29.1.5. Nucleotides in blue represent mutations from scFv Ωg (see also Supplementary Fig. 7a).

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACATGCCGTTCGAGCACTGGGGCAGTCACAACCAGTAATTACGCT **j. m3-noCys.** Nucleotides in blue represent mutations from the disulfide-forming cysteines in m3.

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACAAGCCGTTCGAGCACTGGGGCAGTCACAACCAGTAATTACGCT TCGTGGGTCCAGGAAAAACCGGGTAAGTTGTTCAAGGGTTTGATTGGCGGTACTA ATAACCGCGCACCGGGCGTCCCTAGCCGTTTTTCGGGGAGTTTGATTGGTGACAA GGCCACACTTACTATCAGCAGTCTGCAACCAGAGGATTTCGCTACATACTATAGTG CATTGTGGTACTCCAACCATTGGGTCTTCGGTCAGGGCACGAAGGTTGAACTTAAA CGCGGGGGTGGTGGCTCCGGAGGTGGGGGTTCAGGCGCGGAGGGTCTTCGGG TGGAGGGAGTGAGGTTAAGCTTCTTGAAAGTGGTGGTGGTCTTGTGCAGCCTGGA GGCTCGTTAAAGCTGAGCAGCGCTGTGAGTGGTTTCTCGTTGACGGATTATGGGG TCAATTGGGTACGCCAGGCACCGGGGCGTGGCTTGGAGTGGATTGGCGTCATCT GGGGCGACGGAACCACTGATTATAACAGTGCCTTGAAGGATCGCTTTATCATCAG CAAAGACGATTGCGAAAACACTGTCTATTTGCAAATGAGCAAAGTTCGCTCGGATG ATACGGCGTTATACTACAGTGTCACCGGACTTTTGACTACTGGGGCACGGACGCACT CTTGTCACGGTCTCCAGC

k. 29.1.5-noCys. Nucleotides in blue represent mutations from the disulfide-forming cysteines in 29.1.5.

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACAAGCCGTTCGAGCACTGGGGCAGTCACAACCAGTAATTACGCT TCGTGGGTCCAGGAAAAACCGGGTAAGTTGTTCAAGGGTTTGATTGGCGGTACTA ATAACCGCGCACCGGGCGTCCCTAGCCGTTTTTCGGGGGAGTTTGATTGGTGACAA GGCCACACTTACTATCAGCAGTCTGCAACCAGAGGATTCCGCTACATACTTTAGTG CATTGTGGTACTCCAACCATTGGGTCTTCAGTCAGGGCACGAAGGTTGAACTTAAA CGCGGGGGTGGTGGCTCCGGAGGTGGGGGGTTCAGGCGGCGGAGGGTCTTCGGG TGGAGGGAGTGAGGTTAAGCTTCTTGAAAGTGGTGGTGGTCTTGTGCAGCCTGGA GGCTCGTTAAAGCTGAGCAGCGCTGTGAGTGGTTTCTCGTTGACGGATTATGGGG TCAATTGGGTACGCCAGGCACCGGGGGCGTGGCTTGGAGTGGATTGGCGTCATCT GGGGCGACGGAATCACTGATTATAACAGTGCCTTGAAGGATCGCTTTATCATCAGC AAAGACGATTGCGAAAACACTGTCTATTTGCAAATGAGCAAAGTTCGCTCGGATGA TACGGCGGTATACTACAGTGTCACCGGACTTTTTGACTACTGGGGGGCAGGGCACT CTTGTCACGGTCTCCAGC

I. 58.1.1. Nucleotides in blue represent mutations from m3-noCys (see also **Supplementary Fig. 15a**).

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACAAGCCGTTCGAGCACTGGGGCAGTCACAACCAGTACTTACATT TCGTGGGTCCAGGAAAAACCGGGTAAGTTGTTCAAGGGTTTGATTGGCGGTACTA ATAACCGCGCACCGGGCGTCCCTAGCCGTTTTTCGGGGAGTTTGATTGGTGACAA GGCCACACTTACTATCAGCAGTCTGCAACCAGAGGATTTCGCTACATACTATAGTG CATTGTGGTACTCCAACCATTGGGTCTTCGGTCAGGGCACGAAGGTTGAACTTAAA CGCGGGGGTGGGTGGCTCCGGAGGTGGGGGTTCAGGCGGCGGAGGGTCTTCGGG TGGAGGGAGTGAGGTTAAGCTTCTTGAAAGTGGTGGTGGTCTTGTGCAACCTGGA GGCTCGTTAACGCTGAGCAGCGCTGTGAGTGGTTTCTCGTTGACGGATTATGGGG TCAATTGGGTACGCCAGGCACCGGGGCGTGGCTTGGAGTGGATTGGCGTCATCT GGGGCGACGGAACCACTGATTATAACAGTGCCTTGAAGGATCGCTTTATCATCAG CAAAGACGATTGCGAAAACACTGTCTATTTGCAAATGAGCAAAGTTCGCTCGGATG ATACGGCGTTATACTACAGTGTCACCGGACTTCTTGACTACTGGGGCACGGACG ATACGGCGTTATACTACAGTGTCACCGGACTTCTTGACTACTGGGGGCACGGCACG ATACGGCGTTATACTACAGTGTCACCGGACTTCTTGACTACTGGGGGCACGGCACG TCTTGTCAAGGTCTCCAGC

m. 58.1.2. Nucleotides in blue represent mutations from m3-noCys (see also **Supplementary Fig. 15a**).

n. 58.2.8. Nucleotides in blue represent mutations from m3-noCys (see also **Supplementary Fig. 15a**).

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACAAGCCGTTCGAGCACTGGGGCAGTCACAACCAGTAATTACGCT TCGTGGGTCCAGAAAAAACCGGGTAAGTTGTTCAAGGGTTTGATTGGCGGTACTAA TAACCGCGCACCGGGCGTCCCTAGCCGTTTTTCGGGGGAGTTTGATTGGTGACAAG GCCACACTTACTATCAGCAGTCTGCAACCAGAGGATTTCGCTACATACTATAGTGC ATTGTGGTACTCCAACCATTGGGTCTTCGGTCAGGGCACGAAGGTTGAACTTAAAC GCGGGGGTGGTGGCTCCGGAGGTGGGGGGTTCAGGCGGCGGAGGGTCTTCGGGT GGAGGGAGTGAGGTTAAGCTTCTTGAAAGTGGTGGTGGTCTTGTGCAGCCTGGAG GCTCGTTAAAGCTGAGCAGCGCTGTGAGTGGTTTCTCGTTGACGGATTATGGGGT CAATTGGGTACGCCAGGCACCGGGGCGTGGCTTGGAGTGGATTGGCGTCATCTG GGGCGACGGAACCACTGATTATAACAGTGCCTTGAAGGATCGCTTTATCATCAGCA AAGACGATTGCGAAAACACTGTCTATTTGCAAATGAGCAAAGTTCGCTCGGATGAT ACGGCGTTATACTACAGTGTCACCGGACTTCTTGACTGGGGCAGGGCACCG TTGTCACGGTCTCCAGC

o. 58.3.1. Nucleotides in blue represent mutations from 29.1.5-noCys (see also **Supplementary Fig. 15b**).

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACAAGCCGTTCGAGCACTGGGGCAGTCACAACCAGTAATTACGTT TCGTGGGTCCAGGAAAAACCGGGTAAGTTGTTCAAGGGTTTGATTGGCGGTACTA ATAACCGCGCACCGGGCGTCCCTAGCCGTTTTTCGGGGAGTTTGATTGGTGACAA GGCCACACTTACTATCAGCAGTCTGCAACCAGAGGATTCCGCTACATACTTTAGTG CATTGTGGTACTCCAACCATTGGGTCTTCAGTCAGGGCACGAAGGTTGAACTTAAA CGCGGGGGTGGTGGCTCCGGAGGTGGGGGTTCAGGCGGCGGAGGGTCTTCGGG TGGAGGGAGTGAGGTTAAGCTTCTTGAAAGTGGTGGTGGTCTTGTGCAGCCTGGA GGCTCGTTAAAGCTGAGCAGCGCTGTGAGTGGTTTCTCGTTGACGGATTATGGGG TCAATTGGGTACGCCAGGCACCGGGGCGTGGCTTGGAGTGGATTGGCGTCATCT GGGGCGACGGAACCACTGATTATAACAGTGCCTTGAAGGATCGCTTTATCATCAG CAAAGACGATTGCGAAAACACTGTCTATTTGCAAATGAGCAAAGTTCGCTCGGATG ATACGGCGGTATACTACAGTGTCACCGGACTTCTTGACTGCGGCACGGCAC TCTTGTCACGGTCTCCAGC

p. 58.4.2. Nucleotides in blue represent mutations from 29.1.5-noCys (see also **Supplementary Fig. 15b**).

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACAAGCCGTTCGAGCACTGGGGCAGTCACAACCAGTAATTACGCT TCGTGGATCCAGGAAAAACCGGGTAAGTTGTTCAAGGGTTTGATTGGCGGTACTAA TAACCGCGCACCGGGCGTCCCTAGCCGTTTTTCGGGGGAGTTTGATTGGTGACAAG GCCACACTTACTATCAGCAGTCTGCAACCAGAGGATTCCGCTACATACTTTAGTGC ATTGTGGTACTCCAACCATTGGGTCTTCAGTCAGGGCACGAAGGTTGAACTTAAAC GCGGGGGTGGTGGCTCCGGAGGTGGGGGGTTCAGGCGGCGGAGGGTCTTCGGGT GGAGGGAGTGAGGTTAAGCTTCTTGAAAGTGGTGGTGGTCTTGTGCAGCCTGGAG GCTCGTTAAAGCTGAGCAGCGCTGTGAGTGGTTTCTCGTTGACGGATTATGGGGT CAATTGGGTACGCCAGGCACCGGGGCGTGGCTTGGAGTGGATTGGCGTCATCTG GGGCGACGGAACCACTGATTATAACAGTGCCTTGAAGGATCGCTTTATCATCAGCA AAGACGATTGCGAAAACACTGTCTATTTGCAAATGAGCAAAGTTCGCTCGGATGAT ACGGCGGTATACTACAGTGTCACCGGACTTTTTGACTACTGGGGCCACGGACGCACTC TTGTCACGGTCTCCAGC **q. 58.4.4.** Nucleotides in blue represent mutations from 29.1.5-noCys (see also **Supplementary Fig. 15b**).

CGCGACATTGTTATGACGCAGTCGCCATCAAGCTTATCAGCGTCAGTGGGAGATC GCGTTACAATTACAAGCCGTTCGAGCACTGGGGCAGTCACAACCAGTAATTATGCT TCGTGGGTCCAGGAAAAACCGGGTAAGTTGTTCAAGGGTTTGATTGGCGGTACTA ATAACCGCGCACCGGGCGTCCCTAGCCGTTTTTCGGGGAGTTTGATTGGGGACAA GGCCACACTTACTATCAGCAGTCTGCAACCAGAGGATTCCGCTACATACTTTAGTG CATTGTGGTACTCCAACCATTGGGTCTTCAGTCAGGGCACGAAGGTTGAACTTAAA CGCGGGGGTGGTGGCTCCGGAGGTGGGGGTTCAGGCGGCGGAGGGTCTTCGGG TGGAGGGAGTGAGGTTAAGCTTCTTGAAAGTGGTGGTGGTCTTGTGCAGCCTGGA GGCTCGTTAAAGCTGAGCAGCGCTGTGAGTGGTTTCTCGTTGACGGATTATGGGG TCAATTGGGTACGCCAGGCACCGGGGCGTGGCTTGGAGTGGATTGGCGTCATCT GGGGCGACGGAAGCACTGATTATAACAGTGCCTTGAAGGATCGCTTTATCATCAG CAAAGACGATTGCGAAAACACTGTCTATTTGCAAATGAGCAAAGTTCGCTCGGATG ATACGGCGGTATACTACAGTGTCACCGGACTTTTTGAGTACTGGGGCACGGACG ATACGGCGGTATACTACAGTGTCACCGGACTTTTTGAGTACTGGGGGCACGGCACG TCTTGTCACGGTCTCCAGC

r. htt peptide.

ATGGCGACCTTAGAAAAACTTATGAAGGCATTTGAGTCGCTGAAATCTTTC

s. scFv C4.

t. 34.1.2. Nucleotides in blue represent mutations from scFv C4 (see also **Supplementary Fig. 9**).

GCCAAAGTTCAGCTTCAAGAGAGCGGGGGGGGGGGGGTTTAGTTCAGCCCGGTGGCAGTT TACGCTTATCTTGTGCCGCTTCTGGGTTCCCCTTTTCATCATACTCAATGTCCTGGG TCCGCCAAGCCCCCGGAAAGGGACTGGAGTGGGTCGCAGTAATCTCCTATGATGG **u. 34.2.3.** Nucleotides in blue represent mutations from scFv C4 (see also **Supplementary Fig. 9**).

v. 34.2.6. Nucleotides in blue represent mutations from scFv C4 (see also Supplementary Fig. 9).

CCTTCGCAAATAGCGGGCCTTTGTTTGGAGGTGGAACCAAAGTTACCGTGTTGGG C

w. 50.1.5. Nucleotides in blue represent mutations from MBP G32D+I33P.

AAGATCGAAGAAGGTAAGTTAGTGATTTGGATCAACGGCGATAAAGGCTATAACGG TTTAGCGGAAGTAGGCAAGAAGTTTGAGAAGGATACCGGTACGAAAGTGACGGTC GAACACCCGGATAAGTTAGAGGAGAAGTTCCCTCAAGTAGCGGCAACGGGCGAC GTTTATTAGCGGAGATTACTCCAGACAAGCGTTCCAGGACAAGTTATATCCATTTA CGTGGGACGCAGTGCGTTATAACGGCAAGTTAATCGCATATCCCATTGCGGTAGA AGCCCTGAGCCTGATTTACAACAAGGACCTGTTACCCAACCCTCCGAAGACGTGG GAGGAGATTCCGGCTTTAGATAAGGAACTGAAAGCGAAAGGCAAGTCTGCCCTGA TGTTTAACCTGCAAGAACCCTACTTCACCTGGCCTCTGATCGCGGCGGATGGCGG TTATGCGTTTAAGTACGAAAACGGCAAATACGATATTAAGGATGTAGGCGTCGATA ACGCCGGTGCCAAAGCCGGTCTGACCTTTTTAGTTGATCTGATTAAGAATAAGCAC ATGAACGCAGACACCGACTACAGCATTGCGGAAGCTGCGTTTAATAAAGGTGAGA CCGCCATGACGATTAACGGACCTTGGGCGTGGTCGAACATTGATACCAGTAAAGT CAATTACGGCGTTACAGTCCTGCCGACCTTCAAAGGTCAGCCGTCAAAACCGTAC GTAGGTGTCTTATCCGCCGGTATCAACGCGGCGTCCCCAAATAAGAGTTGGCTA AAGAGTTCCTGGAAAACTATCTGCTGACAGACGAAGGACTGGAGGCTGTGAACAA GGACAAGCCACTGGGCGCTGTTGCGCTGAAAAGTTATGAGGAAGAACTGGCGAAA GATCCCCGCATCGCGGCGACGATGGAAAACGCCCAAAAAGGCGAAATCATGCCG AACATTCCGCAGATGTCAGCTTTTTGGTATGCCGTACGCACGGCTGTTATTAACGC CGCGTCGGGCCGCCAAACCGTTGATGAGGCACTGAAGGACGCGCAGACTCGTAT CACCAAG

x. 50.2.1. Nucleotides in blue represent mutations from MBP G32D+I33P.

AAGATCGAAGAAGGTAAGTTAGTGATTTGGATCAACGGCGATAAAGGCTATAACGG TTTAGCGGAAGTAGTCAAGAAGTTTGAGAAGGATACCGATTCGAAAGTGACGGTC GAACACCCGGATAAGTTAGAGGAGAAGTTCCCTCAAGTAGCGGCAACGGGCGAC GTTTATTAGCGGAGATTACTCCAGACAAGCGTTCCAGGACAAGTTATATCCATTTA CGTGGGACGCAGTGCGTTATAACGGCAAGTTAATCGCATATCCCATTGCGGTAGA AGCCCTGAGCCTGATTTACAACAAGGACCTGTTACCCAACCCTCCGAAGACGTGG GAGGAGATTCCGGCTTTAGATAAGGAACTGAAAGCGAAAGGCAAGTCTGCCCTGA TGTTTAACCTGCAAGAACCCTACTTCACCTGGCCTCTGATCGCGGCGGATGGCGG TTATGCGTTTAAGTACGAAAACGGCAAATACGATATTAAGGATGTAGGCGTCGATA ACGCCGGTGCCAAAGCCGGTCTGACCTTTTTAGTTGATCTGATTAAGAATAAGCAC ATGAACGCAGACACCGACTACAGCATTGCGGAAGCTGCGTTTAATAAAGGTGAGA CCGCCATGACGATTAACGGACCTTGGGCGTGGTCGAACATTGATACCAGTAAAGT CAATTACGGCGTTACAGTCCTGCCGACCTTCAAAGGTCAGCCGTCAAAACCGTTC GTAGGTGTCTTATCCGCCGGTATCAACGCGGCGTCCCCAAATAAGAGTTGGCTA AAGAGTTCCTGGAAAACTATCTGCTGACAGACGAAGGACTGGAGGCTGTGAACAA GGACAAGCCACTGGGCGCTGTTGCGCTGAAAAGTTATGAGGAAGAACTGGCGAAA

GATCCCCGCATCGCGGCGACGATGGAAAACGCCCAAAAAGGCGAAATCATGCCG AACATTCCGCAGATGTCAGCTTTTTGGTATGCCGTACGCACGGCTGTTATTAACGC CGCGTCGGGCCGCCAAACCGTTGATGAGGCACTGAAGGACGCGCAGACTCGTAT CACCAAG

y. 50.2.2. Nucleotides in blue represent mutations from MBP G32D+I33P.

AAGATCGAAGAAGGTAAGTTAGTGATTTGGATCAACGGCGATAAAGGCTATAACGG TTTAGCGGAAGTAGGCAAGAAGTTTGAGAAGGATACCGGTCTGAAAGTGACGGTC GAACACCCGGATAAGTTAGAGGAGAAGTTCCCTCAAGTAGCGGCAACGGGCGAC GTTTATTAGCGGAGATTACTCCAGACAAGCGTTCCAGGACAAGTTATATCCATTTA CGTGGGACGCAGTGCGTTATAACGGCAAGTTAATCGCATATCCCATTGCGGTAGA AGCCCTGAGCCTGATTTACAACAAGGACCTGTTACCCAACCCTCCGAAGACGTGG GAGGAGATTCCGGCTTTAGATAAGGAACTGAAAGCGAAAGGCAAGTCTGCCCTGA TGTTTAACCTGCAAGAACCCTACTTCACCTGGCCTCTGATCGCGGCGGATGGCGG TTATGCGTTTAAGTACGAAAACGGCAAATACGATATTAAGGATGTAGGCGTCGATA ACGCCGGTGCCAAAGCCGGTCTGACCTTTTTAGTTGATCTGATTAAGAATAAGCAC ATGAACGCAGACACCGACTACAGCATTGCGGAAGCTGCGTTTAATAAAGGTGAGA CCGCCATGACGATTAACGGACCTTGGGCGTGGTCGAACATTGATACCAGTAAAGT CAATTACGGCGTTACAGTCCTGCCGACCTTCAAAGGTCAGCCGTCAAAACCGTTC GTAGGTGTCTTATCCGCCGGTATCAACGCGGCGTCCCCAAATAAAGAGTTGGCTA AAGAGTTCCTGGAAAACTATCTGCTGACAGACGAAGGACTGGAGGCTGTGAACAA GGACAAGCCACTGGGCGCTGTTGCGCTGAAAAGTTATGAGGAAGAACTGGCGAAA GATCCCCGCATCGCGGCGACGATGGAAAACGCCCAAAAAGGCGAAATCATGCCG AACATTCCGCAGATGTCAGCTTTTTGGTATGCCGTACGCACGGCTGTTATTAACGC CGCGTCGGGCCGCCAAACCGTTGATGAGGCACTGAAGGACGCGCAGACTCGTAT CACCAAG

z. rAPOBEC1.

aa. 36.1. Nucleotides in blue represent mutations from rAPOBEC1 (see also **Supplementary Fig. 13b**).

ab. 43.1. Nucleotides in blue represent mutations from rAPOBEC1 (see also **Supplementary Fig. 13c**).

ac. 43.2. Nucleotides in blue and red represent mutations from rAPOBEC1 (see also **Supplementary Fig. 13c**). The nucleotide in red was reverted to an A in 43.2-rev.

TCTTCTGAAACCGGTCCGGTTGCGGTTGACCCGACCCTGCGTCGTCGTATCGAAC CGCACGAATTCGAAGTTTTCTTCGACCCGCGTGAACTGCGTAAAGAAACCTGTCTG CTGTACGAAATCAACTGGGGTGGTCGTCACTCTATCTGGCGTCACACCTCTCAGAA CACCAACAAACACGTTGCAGTTAACTTCATCGAAAAATTCACCACCGAACGTTACTT CTGCCCGAACACCCGTTGCTCTATCACCTGGTTCCTGTCTTGGTCTCCGTGCGGT GAATGCTCTCGTGCGATCACCGAATTCCTGTCTCGTTACCCGCACGTTACCCTGTG CATCTACATCGCGCGTCTGTACCACCACGAGGACCCGCGTAACCGTCAGGGTCTG CGTGACCTGATCTCTTCTGGTGTTACCATCCAGATCATGACCGAACAGGAATCTGG TTACTGCTGGCGTAACTTCGTTAACTACTCCCGTCTAACGAAACGCACTGGCCGC GTTACCCGCACCTGTGGGTTCGTCTGTACGTTCTGGAACTGTACTGCATCATCCTG GGTCTGCCGCCGTGCCTGAACATCCTGCGTCGTAAACAGCCGCAGCTGACCTCCT TCACCATCGCGCTGCAGTCTTGCCACTACCAGCGTCTGCCGCCGCACATCCTGTG GGCGACCGGTCTGAAA

ad. rAPOBEC1 mammalian codon optimized.

ae. 36.1 mammalian codon optimized.

af. 43.1 mammalian codon optimized.

CTGCGGGATTTGATCTCTTCAGGTGTGACTATCCAAATTATGACTGAGCAGGAGTC AGGATACTGCTGGAGAAACTTTGTGAATTATAGCCCGAGTAATGAAGCCAACTGGC CTAGGTATCCCCATCTGTGGGTACGACTGTACGTTCTTGAACTGTACTGCATCATA CTGGGCCTGCCTCCTTGTCTCAACATTCTGAGAAGGAAGCAGCCACAGCTGACAT CCTTTACCATCGCTCTTCAGTCTTGTCATTACCAGCGACTGCCCCCACACATTCTCT GGGCCACCGGGTTGAAA

ag. 43.2-rev mammalian codon optimized.

Supplementary References

- 1. Ringquist, S. *et al.* Translation initiation in *Escherichia coli*: sequences within the ribosome-binding site. *Mol Microbiol* **6**, 1219-1229 (1992).
- 2. Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. *Nature chemical biology* **10**, 216-222 (2014).
- 3. Davis, J.H., Rubin, A.J., & Sauer, R.T. Design, construction and characterization of a set of insulated bacterial promoters. *Nucleic Acids Res* **39**, 1131-1141 (2011).
- 4. Rees, H.A. *et al.* Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. *Nature Communications* **8**, 15790 doi: 10.1038/ncomms15790 (2017).
- 5. Gaudelli, N.M. *et al.* Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. *Nature* **551**, 464 (2017).
- 6. Komor, A.C. *et al.* Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. *Nature* **533**, 420 (2016).
- 7. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. *Nature communications* **6**, 8425 (2015).
- 8. Badran, A. H. *et al.* Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. *Nature* **533**, 58-63 (2016).